

PEP 8, the current version of PEP, is a document that contains guidelines

and best practices on how to write Python code.

PEP sty le guide recommends to “ l imit al l l ines to a max. of 79 characters”

Python statements normally occupy a single l ine, but they can span multip le

l ines if they are a parenthesized expression, a l ist , set, or dictionary litera l,

a function cal l argument list, or a multi l ine statement where every end-of-

l ine character except the last is escaped by preceding it with a backslash (\)

In a l l these cases any number of l ines can be spanned and indentation does

not matter for the second and subsequent l ines.

styleguide

Google Python Style Guide
Table of Contents

1 Background

Python is the main dynamic language used at Google. This style guide is a list
of dos and don’ts
for Python programs.

To help you format code correctly, we’ve created a settings file for Vim. For Emacs, the default
settings should be fine.

Many teams use the yapf
auto-formatter to avoid arguing over formatting.

2 Python Language Rules

2.1 Lint

Run pylint over your code using this pylintrc.

2.1.1 Definition

pylint
is a tool for finding bugs and style problems in Python source code. It finds
problems
that are typically caught by a compiler for less dynamic languages like
C and C++. Because of
the dynamic nature of Python, some
warnings may be incorrect; however, spurious warnings
should be fairly
infrequent.

2.1.2 Pros

Catches easy-to-miss errors like typos, using-vars-before-assignment, etc.

2.1.3 Cons

pylint
isn’t perfect. To take advantage of it, sometimes we’ll need to write around it,
suppress
its warnings or fix it.

2.1.4 Decision

Make sure you run
 pylint
on your code.

https://google.github.io/styleguide/
https://google.github.io/styleguide/google_python_style.vim
https://github.com/google/yapf/
https://google.github.io/styleguide/pylintrc

Suppress warnings if they are inappropriate so that other issues are not hidden.
To suppress
warnings, you can set a line-level comment:

dict = 'something awful' # Bad Idea... pylint: disable=redefined-builtin

pylint
warnings are each identified by symbolic name (empty-docstring)
Google-specific
warnings start with g- .

If the reason for the suppression is not clear from the symbolic name, add an
explanation.

Suppressing in this way has the advantage that we can easily search for
suppressions and revisit
them.

You can get a list of
 pylint
warnings by doing:

pylint --list-msgs

To get more information on a particular message, use:

pylint --help-msg=C6409

Prefer pylint: disable to the deprecated older form pylint: disable-msg .

Unused argument warnings can be suppressed by deleting the variables at the
beginning of the
function. Always include a comment explaining why you are
deleting it. “Unused.” is sufficient.
For example:

def viking_cafe_order(spam: str, beans: str, eggs: Optional[str] = None) -> str:

 del beans, eggs # Unused by vikings.

 return spam + spam + spam

Other common forms of suppressing this warning include using ‘ _ ’ as the
identifier for the
unused argument or prefixing the argument name with
‘ unused_ ’, or assigning them to ‘ _ ’.
These forms are allowed but no longer
encouraged. These break callers that pass arguments by
name and do not enforce
that the arguments are actually unused.

2.2 Imports

Use import statements for packages and modules only, not for individual
classes or functions.
Imports from the typing module,
typing_extensions module,
and the
six.moves module
are
exempt from this rule.

2.2.1 Definition

https://github.com/python/typing/tree/master/typing_extensions
https://six.readthedocs.io/#module-six.moves

Reusability mechanism for sharing code from one module to another.

2.2.2 Pros

The namespace management convention is simple. The source of each identifier is
indicated in a
consistent way; x.Obj says that object Obj is defined in
module x .

2.2.3 Cons

Module names can still collide. Some module names are inconveniently long.

2.2.4 Decision

Use import x for importing packages and modules.
Use from x import y where x is the package prefix and y is the module
name with no
prefix.
Use from x import y as z if two modules named y are to be imported or if
 y is an
inconveniently long name.
Use import y as z only when z is a standard abbreviation (e.g., np for
 numpy).

For example the module sound.effects.echo may be imported as follows:

from sound.effects import echo

...

echo.EchoFilter(input, output, delay=0.7, atten=4)

Do not use relative names in imports. Even if the module is in the same package,
use the full
package name. This helps prevent unintentionally importing a
package twice.

2.3 Packages

Import each module using the full pathname location of the module.

2.3.1 Pros

Avoids conflicts in module names or incorrect imports due to the module search
path not being
what the author expected. Makes it easier to find modules.

2.3.2 Cons

Makes it harder to deploy code because you have to replicate the package
hierarchy. Not really a
problem with modern deployment mechanisms.

2.3.3 Decision

All new code should import each module by its full package name.

Imports should be as follows:

Yes:

 # Reference absl.flags in code with the complete name (verbose).

 import absl.flags

 from doctor.who import jodie

 FLAGS = absl.flags.FLAGS

Yes:

 # Reference flags in code with just the module name (common).

 from absl import flags

 from doctor.who import jodie

 FLAGS = flags.FLAGS

(assume this file lives in doctor/who/ where jodie.py also exists)

No:

 # Unclear what module the author wanted and what will be imported. The actual

 # import behavior depends on external factors controlling sys.path.

 # Which possible jodie module did the author intend to import?

 import jodie

The directory the main binary is located in should not be assumed to be in
 sys.path despite
that happening in some environments. This being the case,
code should assume that import
jodie refers to a third party or top level
package named jodie , not a local jodie.py .

2.4 Exceptions

Exceptions are allowed but must be used carefully.

2.4.1 Definition

Exceptions are a means of breaking out of normal control flow to handle errors
or other
exceptional conditions.

2.4.2 Pros

The control flow of normal operation code is not cluttered by error-handling
code. It also allows
the control flow to skip multiple frames when a certain
condition occurs, e.g., returning from N
nested functions in one step instead of
having to plumb error codes through.

2.4.3 Cons

May cause the control flow to be confusing. Easy to miss error cases when making
library calls.

2.4.4 Decision

Exceptions must follow certain conditions:

Make use of built-in exception classes when it makes sense. For example,
raise a
ValueError to indicate a programming mistake like a violated
precondition (such as if you

were passed a negative number but required a
positive one). Do not use assert statements
for validating argument values
of a public API. assert is used to ensure internal
correctness, not to
enforce correct usage nor to indicate that some unexpected event
occurred.
If an exception is desired in the latter cases, use a raise statement. For
example:

Yes:

 def connect_to_next_port(self, minimum: int) -> int:

 """Connects to the next available port.

 Args:

 minimum: A port value greater or equal to 1024.

 Returns:

 The new minimum port.

 Raises:

 ConnectionError: If no available port is found.

 """

 if minimum < 1024:

 # Note that this raising of ValueError is not mentioned in the doc

 # string's "Raises:" section because it is not appropriate to

 # guarantee this specific behavioral reaction to API misuse.

 raise ValueError(f'Min. port must be at least 1024, not {minimum}.')

 port = self._find_next_open_port(minimum)

 if not port:

 raise ConnectionError(

 f'Could not connect to service on port {minimum} or higher.')

 assert port >= minimum, (

 f'Unexpected port {port} when minimum was {minimum}.')

 return port

No:

 def connect_to_next_port(self, minimum: int) -> int:

 """Connects to the next available port.

 Args:

 minimum: A port value greater or equal to 1024.

 Returns:

 The new minimum port.

 """

 assert minimum >= 1024, 'Minimum port must be at least 1024.'

 port = self._find_next_open_port(minimum)

 assert port is not None

 return port

Libraries or packages may define their own exceptions. When doing so they
must inherit
from an existing exception class. Exception names should end in
 Error and should not
introduce repetition (foo.FooError).

Never use catch-all except: statements, or catch Exception or
 StandardError , unless you
are

re-raising the exception, or
creating an isolation point in the program where exceptions are not
propagated but are
recorded and suppressed instead, such as protecting a
thread from crashing by
guarding its outermost block.

Python is very tolerant in this regard and except: will really catch
everything including
misspelled names, sys.exit() calls, Ctrl+C interrupts,
unittest failures and all kinds of other
exceptions that you simply don’t
want to catch.

Minimize the amount of code in a try / except block. The larger the body
of the try , the
more likely that an exception will be raised by a line of
code that you didn’t expect to raise
an exception. In those cases, the
 try / except block hides a real error.

Use the finally clause to execute code whether or not an exception is
raised in the try
block. This is often useful for cleanup, i.e., closing a
file.

2.5 Global variables

Avoid global variables.

2.5.1 Definition

Variables that are declared at the module level or as class attributes.

2.5.2 Pros

Occasionally useful.

2.5.3 Cons

Has the potential to change module behavior during the import, because
assignments to global
variables are done when the module is first imported.

2.5.4 Decision

Avoid global variables.

While they are technically variables, module-level constants are permitted and
encouraged. For
example: _MAX_HOLY_HANDGRENADE_COUNT = 3 . Constants must be
named using all caps with

underscores. See Naming below.

If needed, globals should be declared at the module level and made internal to
the module by
prepending an _ to the name. External access must be done
through public module-level
functions. See Naming below.

2.6 Nested/Local/Inner Classes and Functions

Nested local functions or classes are fine when used to close over a local
variable. Inner classes
are fine.

2.6.1 Definition

A class can be defined inside of a method, function, or class. A function can be
defined inside a
method or function. Nested functions have read-only access to
variables defined in enclosing
scopes.

2.6.2 Pros

Allows definition of utility classes and functions that are only used inside of
a very limited scope.
Very
ADT-y.
Commonly used for implementing decorators.

2.6.3 Cons

Nested functions and classes cannot be directly tested. Nesting can make the
outer function
longer and less readable.

2.6.4 Decision

They are fine with some caveats. Avoid nested functions or classes except when
closing over a
local value other than self or cls . Do not nest a function
just to hide it from users of a
module. Instead, prefix its name with an _ at
the module level so that it can still be accessed by
tests.

2.7 Comprehensions & Generator Expressions

Okay to use for simple cases.

2.7.1 Definition

List, Dict, and Set comprehensions as well as generator expressions provide a
concise and
efficient way to create container types and iterators without
resorting to the use of traditional
loops, map() , filter() , or lambda .

2.7.2 Pros

http://www.google.com/url?sa=D&q=http://en.wikipedia.org/wiki/Abstract_data_type

Simple comprehensions can be clearer and simpler than other dict, list, or set
creation
techniques. Generator expressions can be very efficient, since they
avoid the creation of a list
entirely.

2.7.3 Cons

Complicated comprehensions or generator expressions can be hard to read.

2.7.4 Decision

Okay to use for simple cases. Each portion must fit on one line: mapping
expression, for clause,
filter expression. Multiple for clauses or filter
expressions are not permitted. Use loops instead
when things get more
complicated.

Yes:

 result = [mapping_expr for value in iterable if filter_expr]

 result = [{'key': value} for value in iterable

 if a_long_filter_expression(value)]

 result = [complicated_transform(x)

 for x in iterable if predicate(x)]

 descriptive_name = [

 transform({'key': key, 'value': value}, color='black')

 for key, value in generate_iterable(some_input)

 if complicated_condition_is_met(key, value)

]

 result = []

 for x in range(10):

 for y in range(5):

 if x * y > 10:

 result.append((x, y))

 return {x: complicated_transform(x)

 for x in long_generator_function(parameter)

 if x is not None}

 squares_generator = (x**2 for x in range(10))

 unique_names = {user.name for user in users if user is not None}

 eat(jelly_bean for jelly_bean in jelly_beans

 if jelly_bean.color == 'black')

No:

 result = [complicated_transform(

 x, some_argument=x+1)

 for x in iterable if predicate(x)]

 result = [(x, y) for x in range(10) for y in range(5) if x * y > 10]

 return ((x, y, z)

 for x in range(5)

 for y in range(5)

 if x != y

 for z in range(5)

 if y != z)

2.8 Default Iterators and Operators

Use default iterators and operators for types that support them, like lists,
dictionaries, and files.

2.8.1 Definition

Container types, like dictionaries and lists, define default iterators and
membership test
operators (“in” and “not in”).

2.8.2 Pros

The default iterators and operators are simple and efficient. They express the
operation directly,
without extra method calls. A function that uses default
operators is generic. It can be used with
any type that supports the operation.

2.8.3 Cons

You can’t tell the type of objects by reading the method names (e.g. has_key()
means a
dictionary). This is also an advantage.

2.8.4 Decision

Use default iterators and operators for types that support them, like lists,
dictionaries, and files.
The built-in types define iterator methods, too. Prefer
these methods to methods that return
lists, except that you should not mutate a
container while iterating over it.

Yes: for key in adict: ...

 if key not in adict: ...

 if obj in alist: ...

 for line in afile: ...

 for k, v in adict.items(): ...

 for k, v in six.iteritems(adict): ...

No: for key in adict.keys(): ...

 if not adict.has_key(key): ...

 for line in afile.readlines(): ...

 for k, v in dict.iteritems(): ...

2.9 Generators

Use generators as needed.

2.9 Definition

A generator function returns an iterator that yields a value each time it
executes a yield
statement. After it yields a value, the runtime state of the
generator function is suspended until
the next value is needed.

2.9.2 Pros

Simpler code, because the state of local variables and control flow are
preserved for each call. A
generator uses less memory than a function that
creates an entire list of values at once.

2.9.3 Cons

None.

2.9.4 Decision

Fine. Use “Yields:” rather than “Returns:” in the docstring for generator
functions.

2.10 Lambda Functions

Okay for one-liners. Prefer generator expressions over map() or filter()
with a lambda .

2.10.1 Definition

Lambdas define anonymous functions in an expression, as opposed to a statement.

2.10.2 Pros

Convenient.

2.10.3 Cons

Harder to read and debug than local functions. The lack of names means stack
traces are more
difficult to understand. Expressiveness is limited because the
function may only contain an
expression.

2.10.4 Decision

Okay to use them for one-liners. If the code inside the lambda function is
longer than 60-80
chars, it’s probably better to define it as a regular
nested function.

For common operations like multiplication, use the functions from the operator
module instead
of lambda functions. For example, prefer operator.mul to
 lambda x, y: x * y .

2.11 Conditional Expressions

Okay for simple cases.

2.11.1 Definition

Conditional expressions (sometimes called a “ternary operator”) are mechanisms
that provide a
shorter syntax for if statements. For example: x = 1 if cond
else 2 .

2.11.2 Pros

Shorter and more convenient than an if statement.

2.11.3 Cons

May be harder to read than an if statement. The condition may be difficult to
locate if the
expression is long.

2.11.4 Decision

Okay to use for simple cases. Each portion must fit on one line:
true-expression, if-expression,
else-expression. Use a complete if statement
when things get more complicated.

Yes:

 one_line = 'yes' if predicate(value) else 'no'

 slightly_split = ('yes' if predicate(value)

 else 'no, nein, nyet')

 the_longest_ternary_style_that_can_be_done = (

 'yes, true, affirmative, confirmed, correct'

 if predicate(value)

 else 'no, false, negative, nay')

No:

 bad_line_breaking = ('yes' if predicate(value) else

 'no')

 portion_too_long = ('yes'

 if some_long_module.some_long_predicate_function(

 really_long_variable_name)

 else 'no, false, negative, nay')

2.12 Default Argument Values

Okay in most cases.

2.12.1 Definition

You can specify values for variables at the end of a function’s parameter list,
e.g., def foo(a,
b=0): . If foo is called with only one argument, b is set
to 0. If it is called with two arguments,
b has the value of the second
argument.

2.12.2 Pros

Often you have a function that uses lots of default values, but on rare
occasions you want to
override the defaults. Default argument values provide an
easy way to do this, without having to
define lots of functions for the rare
exceptions. As Python does not support overloaded
methods/functions, default
arguments are an easy way of “faking” the overloading behavior.

2.12.3 Cons

Default arguments are evaluated once at module load time. This may cause
problems if the
argument is a mutable object such as a list or a dictionary. If
the function modifies the object
(e.g., by appending an item to a list), the
default value is modified.

2.12.4 Decision

Okay to use with the following caveat:

Do not use mutable objects as default values in the function or method
definition.

Yes: def foo(a, b=None):

 if b is None:

 b = []

Yes: def foo(a, b: Optional[Sequence] = None):

 if b is None:

 b = []

Yes: def foo(a, b: Sequence = ()): # Empty tuple OK since tuples are immutable

 ...

No: def foo(a, b=[]):

 ...

No: def foo(a, b=time.time()): # The time the module was loaded???

 ...

No: def foo(a, b=FLAGS.my_thing): # sys.argv has not yet been parsed...

 ...

No: def foo(a, b: Mapping = {}): # Could still get passed to unchecked code

 ...

2.13 Properties

Properties may be used to control getting or setting attributes that require
trivial, but
unsurprising, computations or logic. Property implementations must
match the general
expectations of regular attribute access: that they are cheap,
straightforward, and unsurprising.

2.13.1 Definition

A way to wrap method calls for getting and setting an attribute as a standard
attribute access
when the computation is lightweight.

2.13.2 Pros

Readability is increased by eliminating explicit get and set method calls for
simple attribute
access. Allows calculations to be lazy. Considered the Pythonic
way to maintain the interface of a
class. In terms of performance, allowing
properties bypasses needing trivial accessor methods
when a direct variable
access is reasonable. This also allows accessor methods to be added in the
future without breaking the interface.

2.13.3 Cons

Can hide side-effects much like operator overloading. Can be confusing for
subclasses.

2.13.4 Decision

Properties are allowed, but, like operator overloading, should only be used when
necessary and
match the expectations of typical attribute access; follow the
getters and setters rules otherwise.

For example, using a property to simply both get and set an internal attribute
isn’t allowed: there
is no computation occurring, so the property is unnecessary
(make it public instead). In
comparison, using a
property to control attribute access, or calculate a trivially derived value,
is
allowed: the logic is trivial, but unsurprising.

Properties should be created with the @property
decorator. Manually implementing a
property
descriptor is considered a power feature.

Inheritance with properties can be non-obvious if the property itself is not
overridden. Thus one
must make sure that accessor methods are called indirectly
to ensure methods overridden in
subclasses are called by the property (using the
template method design pattern).

Yes: import math

 class Square:

 """A square with two properties: a writable area and a read-only perimeter.

 To use:

 >>> sq = Square(3)

 >>> sq.area

 9

 >>> sq.perimeter

 12

 >>> sq.area = 16

 >>> sq.side

 4

 >>> sq.perimeter

https://en.wikipedia.org/wiki/Template_method_pattern

 16

 """

 def __init__(self, side: float):

 self.side = side

 @property

 def area(self) -> float:

 """Area of the square."""

 return self._get_area()

 @area.setter

 def area(self, area: float):

 self._set_area(area)

 def _get_area(self) -> float:

 """Indirect accessor to calculate the 'area' property."""

 return self.side ** 2

 def _set_area(self, area: float):

 """Indirect setter to set the 'area' property."""

 self.side = math.sqrt(area)

 @property

 def perimeter(self) -> float:

 return self.side * 4

2.14 True/False Evaluations

Use the “implicit” false if at all possible.

2.14.1 Definition

Python evaluates certain values as False when in a boolean context. A quick
“rule of thumb” is
that all “empty” values are considered false, so 0, None,
[], {}, '' all evaluate as false in a
boolean context.

2.14.2 Pros

Conditions using Python booleans are easier to read and less error-prone. In
most cases, they’re
also faster.

2.14.3 Cons

May look strange to C/C++ developers.

2.14.4 Decision

Use the “implicit” false if possible, e.g., if foo: rather than if foo !=
[]: . There are a few
caveats that you should keep in mind though:

Always use if foo is None: (or is not None) to check for a None value.
E.g., when testing
whether a variable or argument that defaults to None
was set to some other value. The
other value might be a value that’s false
in a boolean context!

Never compare a boolean variable to False using == . Use if not x:
instead. If you need
to distinguish False from None then chain the
expressions, such as if not x and x is not
None: .

For sequences (strings, lists, tuples), use the fact that empty sequences
are false, so if seq:
and if not seq: are preferable to if len(seq):
and if not len(seq): respectively.

When handling integers, implicit false may involve more risk than benefit
(i.e., accidentally
handling None as 0). You may compare a value which is
known to be an integer (and is not
the result of len()) against the
integer 0.

Yes: if not users:

 print('no users')

 if i % 10 == 0:

 self.handle_multiple_of_ten()

 def f(x=None):
 if x is None:

 x = []

No: if len(users) == 0:

 print('no users')

 if not i % 10:

 self.handle_multiple_of_ten()

 def f(x=None):
 x = x or []

Note that '0' (i.e., 0 as string) evaluates to true.

2.16 Lexical Scoping

Okay to use.

2.16.1 Definition

A nested Python function can refer to variables defined in enclosing functions,
but cannot assign
to them. Variable bindings are resolved using lexical scoping,
that is, based on the static program
text. Any assignment to a name in a block
will cause Python to treat all references to that name
as a local variable, even
if the use precedes the assignment. If a global declaration occurs, the
name is
treated as a global variable.

An example of the use of this feature is:

def get_adder(summand1: float) -> Callable[[float], float]:

 """Returns a function that adds numbers to a given number."""

 def adder(summand2: float) -> float:

 return summand1 + summand2

 return adder

2.16.2 Pros

Often results in clearer, more elegant code. Especially comforting to
experienced Lisp and
Scheme (and Haskell and ML and …) programmers.

2.16.3 Cons

Can lead to confusing bugs. Such as this example based on
PEP-0227:

i = 4

def foo(x: Iterable[int]):

 def bar():

 print(i, end='')

 # ...

 # A bunch of code here

 # ...

 for i in x: # Ah, i *is* local to foo, so this is what bar sees

 print(i, end='')

 bar()

So foo([1, 2, 3]) will print 1 2 3 3 ,
not 1 2 3 4 .

2.16.4 Decision

Okay to use.

2.17 Function and Method Decorators

Use decorators judiciously when there is a clear advantage. Avoid staticmethod
and limit use of
classmethod .

2.17.1 Definition

Decorators for Functions and Methods
(a.k.a “the @ notation”). One common decorator is
@property , used for
converting ordinary methods into dynamically computed attributes.

However, the
decorator syntax allows for user-defined decorators as well. Specifically, for
some
function my_decorator , this:

http://www.google.com/url?sa=D&q=http://www.python.org/dev/peps/pep-0227/
https://docs.python.org/3/glossary.html#term-decorator

class C:

 @my_decorator

 def method(self):

 # method body ...

is equivalent to:

class C:

 def method(self):

 # method body ...

 method = my_decorator(method)

2.17.2 Pros

Elegantly specifies some transformation on a method; the transformation might
eliminate some
repetitive code, enforce invariants, etc.

2.17.3 Cons

Decorators can perform arbitrary operations on a function’s arguments or return
values, resulting
in surprising implicit behavior. Additionally, decorators
execute at import time. Failures in
decorator code are pretty much impossible to
recover from.

2.17.4 Decision

Use decorators judiciously when there is a clear advantage. Decorators should
follow the same
import and naming guidelines as functions. Decorator pydoc
should clearly state that the
function is a decorator. Write unit tests for
decorators.

Avoid external dependencies in the decorator itself (e.g. don’t rely on files,
sockets, database
connections, etc.), since they might not be available when the
decorator runs (at import time,
perhaps from pydoc or other tools). A
decorator that is called with valid parameters should (as
much as possible) be
guaranteed to succeed in all cases.

Decorators are a special case of “top level code” - see main for
more discussion.

Never use staticmethod unless forced to in order to integrate with an API
defined in an existing
library. Write a module level function instead.

Use classmethod only when writing a named constructor or a class-specific
routine that modifies
necessary global state such as a process-wide cache.

2.18 Threading

Do not rely on the atomicity of built-in types.

While Python’s built-in data types such as dictionaries appear to have atomic
operations, there
are corner cases where they aren’t atomic (e.g. if __hash__
or __eq__ are implemented as
Python methods) and their atomicity should not be
relied upon. Neither should you rely on
atomic variable assignment (since this
in turn depends on dictionaries).

Use the Queue module’s Queue data type as the preferred way to communicate
data between
threads. Otherwise, use the threading module and its locking
primitives. Prefer condition
variables and threading.Condition instead of
using lower-level locks.

2.19 Power Features

Avoid these features.

2.19.1 Definition

Python is an extremely flexible language and gives you many fancy features such
as custom
metaclasses, access to bytecode, on-the-fly compilation, dynamic
inheritance, object reparenting,
import hacks, reflection (e.g. some uses of
 getattr()), modification of system internals,
__del__ methods implementing
customized cleanup, etc.

2.19.2 Pros

These are powerful language features. They can make your code more compact.

2.19.3 Cons

It’s very tempting to use these “cool” features when they’re not absolutely
necessary. It’s harder
to read, understand, and debug code that’s using unusual
features underneath. It doesn’t seem
that way at first (to the original author),
but when revisiting the code, it tends to be more difficult
than code that is
longer but is straightforward.

2.19.4 Decision

Avoid these features in your code.

Standard library modules and classes that internally use these features are okay
to use (for
example, abc.ABCMeta , dataclasses , and enum).

2.20 Modern Python: from __future__ imports

New language version semantic changes may be gated behind a special future
import to enable
them on a per-file basis within earlier runtimes.

2.20.1 Definition

Being able to turn on some of the more modern features via from __future__
import
statements allows early use of features from expected future Python
versions.

2.20.2 Pros

This has proven to make runtime version upgrades smoother as changes can be made
on a per-
file basis while declaring compatibility and preventing regressions
within those files. Modern
code is more maintainable as it is less likely to
accumulate technical debt that will be problematic
during future runtime
upgrades.

2.20.3 Cons

Such code may not work on very old interpreter versions prior to the
introduction of the needed
future statement. The need for this is more common in
projects supporting an extremely wide
variety of environments.

2.20.4 Decision

from __future__ imports

Use of from __future__ import statements is encouraged. It allows a given
source file to start
using more modern Python syntax features today. Once you no
longer need to run on a version
where the features are hidden behind a
 __future__ import, feel free to remove those lines.

In code that may execute on versions as old as 3.5 rather than >= 3.7, import:

from __future__ import generator_stop

For legacy code with the burden of continuing to support 2.7, import:

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

For more information read the
Python future statement definitions
documentation.

Please don’t remove these imports until you are confident the code is only ever
used in a
sufficiently modern environment. Even if you do not currently use the
feature a specific future
import enables in your code today, keeping it in place
in the file prevents later modifications of
the code from inadvertently
depending on the older behavior.

Use other from __future__ import statements as you see fit. We did not include
unicode_literals in our recommendations for 2.7 as it was not a clear win due
to implicit

default codec conversion consequences it introduced in many places
within 2.7. Most dual-
version 2-and-3 code was better off with explicit use of
 b'' and u'' bytes and unicode string
literals where necessary.

The six, future, and past libraries

https://docs.python.org/3/library/__future__.html

When your project still needs to support use under both Python 2 and 3, use the
six,
future, and
past libraries as you see fit. They exist to
make your code cleaner and life easier.

2.21 Type Annotated Code

You can annotate Python 3 code with type hints according to
PEP-484, and type-check the code
at
build time with a type checking tool like pytype.

Type annotations can be in the source or in a
stub pyi file. Whenever
possible, annotations
should be in the source. Use pyi files for third-party or
extension modules.

2.21.1 Definition

Type annotations (or “type hints”) are for function or method arguments and
return values:

def func(a: int) -> List[int]:

You can also declare the type of a variable using similar
PEP-526 syntax:

a: SomeType = some_func()

Or by using a type comment in code that must support legacy Python versions.

a = some_func() # type: SomeType

2.21.2 Pros

Type annotations improve the readability and maintainability of your code. The
type checker will
convert many runtime errors to build-time errors, and reduce
your ability to use Power Features.

2.21.3 Cons

You will have to keep the type declarations up to date.
You might see type errors that you think
are
valid code. Use of a
type checker
may reduce your ability to use Power Features.

2.21.4 Decision

You are strongly encouraged to enable Python type analysis when updating code.
When adding
or modifying public APIs, include type annotations and enable
checking via pytype in the build
system. As static analysis is relatively new to
Python, we acknowledge that undesired side-effects
(such as
wrongly
inferred types) may prevent adoption by some projects. In those situations,
authors are encouraged to add a comment with a TODO or link to a bug describing
the issue(s)
currently preventing type annotation adoption in the BUILD file or
in the code itself as
appropriate.

https://pypi.org/project/six/
https://pypi.org/project/future/
https://pypi.org/project/past/
https://www.python.org/dev/peps/pep-0484/
https://github.com/google/pytype
https://www.python.org/dev/peps/pep-0484/#stub-files
https://www.python.org/dev/peps/pep-0526/
https://github.com/google/pytype

3 Python Style Rules

3.1 Semicolons

Do not terminate your lines with semicolons, and do not use semicolons to put
two statements
on the same line.

3.2 Line length

Maximum line length is 80 characters.

Explicit exceptions to the 80 character limit:

Long import statements.
URLs, pathnames, or long flags in comments.
Long string module level constants not containing whitespace that would be
inconvenient to
split across lines such as URLs or pathnames.

Pylint disable comments. (e.g.: # pylint: disable=invalid-name)

Do not use backslash line continuation except for with statements requiring
three or more
context managers.

Make use of Python’s
implicit line joining inside parentheses, brackets and braces.
If necessary,
you can add an extra pair of parentheses around an expression.

Yes: foo_bar(self, width, height, color='black', design=None, x='foo',

 emphasis=None, highlight=0)

 if (width == 0 and height == 0 and

 color == 'red' and emphasis == 'strong'):

When a literal string won’t fit on a single line, use parentheses for implicit
line joining.

x = ('This will build a very long long '

 'long long long long long long string')

Within comments, put long URLs on their own line if necessary.

Yes: # See details at

 # http://www.example.com/us/developer/documentation/api/content/v2.0/csv_file_name_e

http://docs.python.org/reference/lexical_analysis.html#implicit-line-joining

No: # See details at
 # http://www.example.com/us/developer/documentation/api/content/\

 # v2.0/csv_file_name_extension_full_specification.html

It is permissible to use backslash continuation when defining a with statement
whose
expressions span three or more lines. For two lines of expressions, use a
nested with statement:

Yes: with very_long_first_expression_function() as spam, \

 very_long_second_expression_function() as beans, \

 third_thing() as eggs:

 place_order(eggs, beans, spam, beans)

No: with VeryLongFirstExpressionFunction() as spam, \

 VeryLongSecondExpressionFunction() as beans:

 PlaceOrder(beans, spam)

Yes: with very_long_first_expression_function() as spam:

 with very_long_second_expression_function() as beans:
 place_order(beans, spam)

Make note of the indentation of the elements in the line continuation examples
above; see the
indentation section for explanation.

In all other cases where a line exceeds 80 characters, and the
yapf
auto-formatter does not help
bring the line below the limit, the line is allowed
to exceed this maximum. Authors are
encouraged to manually break the line up per
the notes above when it is sensible.

3.3 Parentheses

Use parentheses sparingly.

It is fine, though not required, to use parentheses around tuples. Do not use
them in return
statements or conditional statements unless using parentheses for
implied line continuation or
to indicate a tuple.

Yes: if foo:

 bar()

 while x:

 x = bar()

 if x and y:

 bar()

 if not x:

 bar()

 # For a 1 item tuple the ()s are more visually obvious than the comma.

 onesie = (foo,)

https://github.com/google/yapf/

 return foo

 return spam, beans

 return (spam, beans)

 for (x, y) in dict.items(): ...

No: if (x):

 bar()

 if not(x):

 bar()

 return (foo)

3.4 Indentation

Indent your code blocks with 4 spaces.

Never use tabs or mix tabs and spaces. In cases of implied line continuation,
you should align
wrapped elements either vertically, as per the examples in the
line length section; or using a
hanging indent of 4 spaces,
in which case there should be nothing after the open parenthesis or
bracket on
the first line.

Yes: # Aligned with opening delimiter

 foo = long_function_name(var_one, var_two,

 var_three, var_four)

 meal = (spam,

 beans)

 # Aligned with opening delimiter in a dictionary

 foo = {

 'long_dictionary_key': value1 +
 value2,

 ...

 }

 # 4-space hanging indent; nothing on first line

 foo = long_function_name(

 var_one, var_two, var_three,

 var_four)

 meal = (

 spam,

 beans)

 # 4-space hanging indent in a dictionary

 foo = {

 'long_dictionary_key':

 long_dictionary_value,

 ...

 }

No: # Stuff on first line forbidden

 foo = long_function_name(var_one, var_two,

 var_three, var_four)

 meal = (spam,

 beans)

 # 2-space hanging indent forbidden

 foo = long_function_name(

 var_one, var_two, var_three,

 var_four)

 # No hanging indent in a dictionary

 foo = {

 'long_dictionary_key':

 long_dictionary_value,

 ...

 }

3.4.1 Trailing commas in sequences of items?

Trailing commas in sequences of items are recommended only when the closing
container token
] ,) , or } does not appear on the same line as the final
element. The presence of a trailing

comma is also used as a hint to our Python
code auto-formatter YAPF to direct it to auto-format
the container
of items to one item per line when the , after the final element is present.

Yes: golomb3 = [0, 1, 3]

Yes: golomb4 = [

 0,

 1,

 4,

 6,

]

No: golomb4 = [

 0,

 1,

 4,

 6

]

3.5 Blank Lines

Two blank lines between top-level definitions, be they function or class
definitions. One blank
line between method definitions and between the class
line and the first method. No blank line
following a def line. Use single
blank lines as you judge appropriate within functions or
methods.

https://pypi.org/project/yapf/

Blank lines need not be anchored to the definition. For example, related
comments immediately
preceding function, class, and method definitions can make
sense. Consider if your comment
might be more useful as part of the docstring.

3.6 Whitespace

Follow standard typographic rules for the use of spaces around punctuation.

No whitespace inside parentheses, brackets or braces.

Yes: spam(ham[1], {'eggs': 2}, [])

No: spam(ham[1], { 'eggs': 2 }, [])

No whitespace before a comma, semicolon, or colon. Do use whitespace after a
comma,
semicolon, or colon, except at the end of the line.

Yes: if x == 4:

 print(x, y)

 x, y = y, x

No: if x == 4 :

 print(x , y)

 x , y = y , x

No whitespace before the open paren/bracket that starts an argument list,
indexing or slicing.

Yes: spam(1)

No: spam (1)

Yes: dict['key'] = list[index]

No: dict ['key'] = list [index]

No trailing whitespace.

Surround binary operators with a single space on either side for assignment
(=), comparisons
(==, <, >, !=, <>, <=, >=, in, not in, is, is not), and
Booleans (and, or, not). Use your

better judgment for the insertion of spaces
around arithmetic operators (+ , - , * , / , // , % ,
** , @).

Yes: x == 1

No: x<1

Never use spaces around = when passing keyword arguments or defining a default
parameter
value, with one exception:
when a type annotation is present, do use spaces
around the = for
the default parameter value.

Yes: def complex(real, imag=0.0): return Magic(r=real, i=imag)

Yes: def complex(real, imag: float = 0.0): return Magic(r=real, i=imag)

No: def complex(real, imag = 0.0): return Magic(r = real, i = imag)

No: def complex(real, imag: float=0.0): return Magic(r = real, i = imag)

Don’t use spaces to vertically align tokens on consecutive lines, since it
becomes a maintenance
burden (applies to : , # , = , etc.):

Yes:

 foo = 1000 # comment

 long_name = 2 # comment that should not be aligned

 dictionary = {

 'foo': 1,

 'long_name': 2,

 }

No:

 foo = 1000 # comment

 long_name = 2 # comment that should not be aligned

 dictionary = {

 'foo' : 1,

 'long_name': 2,

 }

3.7 Shebang Line

Most .py files do not need to start with a #! line. Start the main file of a
program with
#!/usr/bin/env python3 (to support virtualenvs) or #!/usr/bin/python3 per
PEP-394.

https://www.python.org/dev/peps/pep-0394/

This line is used by the kernel to find the Python interpreter, but is ignored by Python when
importing modules. It is only necessary on a file intended to be executed directly.

3.8 Comments and Docstrings

Be sure to use the right style for module, function, method docstrings and
inline comments.

3.8.1 Docstrings

Python uses docstrings to document code. A docstring is a string that is the
first statement in a
package, module, class or function. These strings can be
extracted automatically through the
__doc__ member of the object and are used
by pydoc .
(Try running pydoc on your module to

see how it looks.) Always use the three
double-quote """ format for docstrings (per
PEP 257).
A
docstring should be organized as a summary line (one physical line not
exceeding 80 characters)
terminated by a period, question mark, or exclamation
point. When writing more (encouraged),
this must be followed by a blank line,
followed by the rest of the docstring starting at the same
cursor position as
the first quote of the first line. There are more formatting guidelines for
docstrings below.

3.8.2 Modules

Every file should contain license boilerplate. Choose the appropriate boilerplate for the license
used by the project (for example, Apache 2.0, BSD, LGPL, GPL)

Files should start with a docstring describing the contents and usage of the
module.

"""A one line summary of the module or program, terminated by a period.

Leave one blank line. The rest of this docstring should contain an

overall description of the module or program. Optionally, it may also

contain a brief description of exported classes and functions and/or usage

examples.

 Typical usage example:

 foo = ClassFoo()

 bar = foo.FunctionBar()

"""

3.8.3 Functions and Methods

In this section, “function” means a method, function, or generator.

A function must have a docstring, unless it meets all of the following criteria:

not externally visible
very short

https://www.google.com/url?sa=D&q=http://www.python.org/dev/peps/pep-0257/

obvious

A docstring should give enough information to write a call to the function
without reading the
function’s code. The docstring should describe the
function’s calling syntax and its semantics, but
generally not its
implementation details, unless those details are relevant to how the function is
to be used. For example, a function that mutates one of its arguments as a side
effect should
note that in its docstring. Otherwise, subtle but important
details of a function’s implementation
that are not relevant to the caller are
better expressed as comments alongside the code than
within the function’s
docstring.

The docstring should be descriptive-style ("""Fetches rows from a
Bigtable.""") rather than
imperative-style ("""Fetch rows from a
Bigtable."""). The docstring for a @property data
descriptor should use the
same style as the docstring for an attribute or a
function argument
("""The Bigtable path.""" ,
rather than """Returns the Bigtable path.""").

A method that overrides a method from a base class may have a simple docstring
sending the
reader to its overridden method’s docstring, such as """See base
class.""" . The rationale is
that there is no need to repeat in many places
documentation that is already present in the base
method’s docstring. However,
if the overriding method’s behavior is substantially different from
the
overridden method, or details need to be provided (e.g., documenting additional
side
effects), a docstring with at least those differences is required on the
overriding method.

Certain aspects of a function should be documented in special sections, listed
below. Each
section begins with a heading line, which ends with a colon. All
sections other than the heading
should maintain a hanging indent of two or four
spaces (be consistent within a file). These
sections can be omitted in cases
where the function’s name and signature are informative
enough that it can be
aptly described using a one-line docstring.

Args:
List each parameter by name. A description should follow the name, and be
separated by a
colon followed by either a space or newline. If the
description is too long to fit on a single
80-character line, use a hanging
indent of 2 or 4 spaces more than the parameter name (be
consistent with the
rest of the docstrings in the file). The description should include required
type(s) if the code does not contain a corresponding type annotation. If a
function accepts
*foo (variable length argument lists) and/or **bar
(arbitrary keyword arguments), they

should be listed as *foo and **bar .

Returns: (or Yields: for generators)
Describe the type and semantics of the return value. If the function only
returns None, this
section is not required. It may also be omitted if the
docstring starts with Returns or Yields
(e.g. """Returns row from Bigtable
as a tuple of strings.""") and the opening sentence
is sufficient to
describe the return value. Do not imitate ‘NumPy style’
(example),
which
frequently documents a tuple return value as if it were multiple
return values with individual
names (never mentioning the tuple). Instead,
describe such a return value as: “Returns a
tuple (mat_a, mat_b), where
mat_a is …, and …”. The auxiliary names in the docstring need

http://numpy.org/doc/stable/reference/generated/numpy.linalg.qr.html

not
necessarily correspond to any internal names used in the function body (as
those are
not part of the API).

Raises:
List all exceptions that are relevant to the interface followed by a
description. Use a similar
exception name + colon + space or newline and
hanging indent style as described in Args:.
You should not document
exceptions that get raised if the API specified in the docstring is
violated
(because this would paradoxically make behavior under violation of the API
part of
the API).

def fetch_smalltable_rows(table_handle: smalltable.Table,

 keys: Sequence[Union[bytes, str]],

 require_all_keys: bool = False,

) -> Mapping[bytes, Tuple[str]]:

 """Fetches rows from a Smalltable.

 Retrieves rows pertaining to the given keys from the Table instance

 represented by table_handle. String keys will be UTF-8 encoded.

 Args:

 table_handle: An open smalltable.Table instance.

 keys: A sequence of strings representing the key of each table

 row to fetch. String keys will be UTF-8 encoded.

 require_all_keys: If True only rows with values set for all keys will be

 returned.

 Returns:

 A dict mapping keys to the corresponding table row data

 fetched. Each row is represented as a tuple of strings. For

 example:

 {b'Serak': ('Rigel VII', 'Preparer'),

 b'Zim': ('Irk', 'Invader'),

 b'Lrrr': ('Omicron Persei 8', 'Emperor')}

 Returned keys are always bytes. If a key from the keys argument is

 missing from the dictionary, then that row was not found in the

 table (and require_all_keys must have been False).

 Raises:

 IOError: An error occurred accessing the smalltable.

 """

Similarly, this variation on Args: with a line break is also allowed:

def fetch_smalltable_rows(table_handle: smalltable.Table,

 keys: Sequence[Union[bytes, str]],

 require_all_keys: bool = False,

) -> Mapping[bytes, Tuple[str]]:

 """Fetches rows from a Smalltable.

 Retrieves rows pertaining to the given keys from the Table instance

 represented by table_handle. String keys will be UTF-8 encoded.

 Args:

 table_handle:

 An open smalltable.Table instance.

 keys:

 A sequence of strings representing the key of each table row to

 fetch. String keys will be UTF-8 encoded.

 require_all_keys:

 If True only rows with values set for all keys will be returned.

 Returns:

 A dict mapping keys to the corresponding table row data

 fetched. Each row is represented as a tuple of strings. For

 example:

 {b'Serak': ('Rigel VII', 'Preparer'),

 b'Zim': ('Irk', 'Invader'),

 b'Lrrr': ('Omicron Persei 8', 'Emperor')}

 Returned keys are always bytes. If a key from the keys argument is

 missing from the dictionary, then that row was not found in the

 table (and require_all_keys must have been False).

 Raises:

 IOError: An error occurred accessing the smalltable.

 """

3.8.4 Classes

Classes should have a docstring below the class definition describing the class.
If your class has
public attributes, they should be documented here in an
 Attributes section and follow the
same formatting as a
function’s Args section.

class SampleClass:

 """Summary of class here.

 Longer class information....

 Longer class information....

 Attributes:

 likes_spam: A boolean indicating if we like SPAM or not.

 eggs: An integer count of the eggs we have laid.

 """

 def __init__(self, likes_spam: bool = False):

 """Inits SampleClass with blah."""

 self.likes_spam = likes_spam

 self.eggs = 0

 def public_method(self):

 """Performs operation blah."""

3.8.5 Block and Inline Comments

The final place to have comments is in tricky parts of the code. If you’re going
to have to explain
it at the next code review,
you should comment it now. Complicated operations get a few lines of
comments
before the operations commence. Non-obvious ones get comments at the end of the
line.

We use a weighted dictionary search to find out where i is in

the array. We extrapolate position based on the largest num

in the array and the array size and then do binary search to

get the exact number.

if i & (i-1) == 0: # True if i is 0 or a power of 2.

To improve legibility, these comments should start at least 2 spaces away from
the code with the
comment character # , followed by at least one space before
the text of the comment itself.

On the other hand, never describe the code. Assume the person reading the code
knows Python
(though not what you’re trying to do) better than you do.

BAD COMMENT: Now go through the b array and make sure whenever i occurs

the next element is i+1

3.8.6 Punctuation, Spelling, and Grammar

Pay attention to punctuation, spelling, and grammar; it is easier to read
well-written comments
than badly written ones.

Comments should be as readable as narrative text, with proper capitalization and
punctuation. In
many cases, complete sentences are more readable than sentence
fragments. Shorter comments,
such as comments at the end of a line of code, can
sometimes be less formal, but you should be
consistent with your style.

Although it can be frustrating to have a code reviewer point out that you are
using a comma
when you should be using a semicolon, it is very important that
source code maintain a high
level of clarity and readability. Proper
punctuation, spelling, and grammar help with that goal.

3.10 Strings

Use an
f-string,
the % operator, or the format method for formatting strings, even when the
parameters are all strings. Use your best judgment to decide between + and %
(or format)
though. Do not use % or the format method for pure
concatenation.

http://en.wikipedia.org/wiki/Code_review
https://docs.python.org/3/reference/lexical_analysis.html#f-strings

Yes: x = a + b

 x = '%s, %s!' % (imperative, expletive)

 x = '{}, {}'.format(first, second)

 x = 'name: %s; score: %d' % (name, n)

 x = 'name: {}; score: {}'.format(name, n)

 x = f'name: {name}; score: {n}'

No: x = '%s%s' % (a, b) # use + in this case

 x = '{}{}'.format(a, b) # use + in this case

 x = first + ', ' + second

 x = 'name: ' + name + '; score: ' + str(n)

Avoid using the + and += operators to accumulate a string within a loop. In
some conditions,
accumulating a string with addition can lead to quadratic
rather than linear running time.
Although common accumulations of this sort may
be optimized on CPython, that is an
implementation detail. The conditions under
which an optimization applies are not easy to
predict and may change. Instead,
add each substring to a list and ''.join the list after the loop
terminates,
or write each substring to an io.StringIO buffer. These techniques
consistently have
amortized-linear run time complexity.

Yes: items = ['<table>']

 for last_name, first_name in employee_list:

 items.append('<tr><td>%s, %s</td></tr>' % (last_name, first_name))

 items.append('</table>')

 employee_table = ''.join(items)

No: employee_table = '<table>'

 for last_name, first_name in employee_list:

 employee_table += '<tr><td>%s, %s</td></tr>' % (last_name, first_name)

 employee_table += '</table>'

Be consistent with your choice of string quote character within a file. Pick '
or " and stick with
it. It is okay to use the other quote character on a
string to avoid the need to backslash-escape
quote characters within the string.

Yes:

 Python('Why are you hiding your eyes?')

 Gollum("I'm scared of lint errors.")

 Narrator('"Good!" thought a happy Python reviewer.')

No:

 Python("Why are you hiding your eyes?")

 Gollum('The lint. It burns. It burns us.')

 Gollum("Always the great lint. Watching. Watching.")

Prefer """ for multi-line strings rather than ''' . Projects may choose to
use ''' for all non-
docstring multi-line strings if and only if they also use
 ' for regular strings. Docstrings must use
""" regardless.

Multi-line strings do not flow with the indentation of the rest of the program.
If you need to
avoid embedding extra space in the string, use either
concatenated single-line strings or a multi-
line string with
 textwrap.dedent()
to remove the initial space on each line:

 No:

 long_string = """This is pretty ugly.

Don't do this.

"""

 Yes:

 long_string = """This is fine if your use case can accept

 extraneous leading spaces."""

 Yes:

 long_string = ("And this is fine if you cannot accept\n" +

 "extraneous leading spaces.")

 Yes:

 long_string = ("And this too is fine if you cannot accept\n"

 "extraneous leading spaces.")

 Yes:

 import textwrap

 long_string = textwrap.dedent("""\

 This is also fine, because textwrap.dedent()

 will collapse common leading spaces in each line.""")

3.10.1 Logging

For logging functions that expect a pattern-string (with %-placeholders) as
their first argument:
Always call them with a string literal (not an f-string!)
as their first argument with pattern-
parameters as subsequent arguments. Some
logging implementations collect the unexpanded
pattern-string as a queryable
field. It also prevents spending time rendering a message that no
logger is
configured to output.

 Yes:

 import tensorflow as tf

https://docs.python.org/3/library/textwrap.html#textwrap.dedent

 logger = tf.get_logger()

 logger.info('TensorFlow Version is: %s', tf.__version__)

 Yes:

 import os

 from absl import logging

 logging.info('Current $PAGER is: %s', os.getenv('PAGER', default=''))

 homedir = os.getenv('HOME')

 if homedir is None or not os.access(homedir, os.W_OK):

 logging.error('Cannot write to home directory, $HOME=%r', homedir)

 No:

 import os

 from absl import logging

 logging.info('Current $PAGER is:')

 logging.info(os.getenv('PAGER', default=''))

 homedir = os.getenv('HOME')

 if homedir is None or not os.access(homedir, os.W_OK):

 logging.error(f'Cannot write to home directory, $HOME={homedir!r}')

3.10.2 Error Messages

Error messages (such as: message strings on exceptions like ValueError , or
messages shown to
the user) should follow three guidelines:

1. The message needs to precisely match the actual error condition.

2. Interpolated pieces need to always be clearly identifiable as such.

3. They should allow simple automated processing (e.g. grepping).

 Yes:

 if not 0 <= p <= 1:

 raise ValueError(f'Not a probability: {p!r}')

 try:

 os.rmdir(workdir)

 except OSError as error:

 logging.warning('Could not remove directory (reason: %r): %r',

 error, workdir)

 No:

 if p < 0 or p > 1: # PROBLEM: also false for float('nan')!

 raise ValueError(f'Not a probability: {p!r}')

 try:

 os.rmdir(workdir)

 except OSError:

 # PROBLEM: Message makes an assumption that might not be true:

 # Deletion might have failed for some other reason, misleading

 # whoever has to debug this.

 logging.warning('Directory already was deleted: %s', workdir)

 try:

 os.rmdir(workdir)

 except OSError:

 # PROBLEM: The message is harder to grep for than necessary, and

 # not universally non-confusing for all possible values of `workdir`.

 # Imagine someone calling a library function with such code

 # using a name such as workdir = 'deleted'. The warning would read:

 # "The deleted directory could not be deleted."

 logging.warning('The %s directory could not be deleted.', workdir)

3.11 Files, Sockets, and similar Stateful Resources

Explicitly close files and sockets when done with them. This rule naturally
extends to closeable
resources that internally use sockets, such as database
connections, and also other resources that
need to be closed down in a similar
fashion. To name only a few examples, this also includes
mmap mappings,
h5py File objects, and
matplotlib.pyplot figure windows.

Leaving files, sockets or other such stateful objects open unnecessarily has
many downsides:

They may consume limited system resources, such as file descriptors. Code
that deals with
many such objects may exhaust those resources unnecessarily
if they’re not returned to the
system promptly after use.
Holding files open may prevent other actions such as moving or deleting
them, or
unmounting a filesystem.
Files and sockets that are shared throughout a program may inadvertently be
read from or
written to after logically being closed. If they are actually
closed, attempts to read or write
from them will raise exceptions, making
the problem known sooner.

Furthermore, while files and sockets (and some similarly behaving resources) are
automatically
closed when the object is destructed, coupling the lifetime of the
object to the state of the
resource is poor practice:

There are no guarantees as to when the runtime will actually invoke the
 __del__ method.
Different Python implementations use different memory
management techniques, such as
delayed garbage collection, which may
increase the object’s lifetime arbitrarily and
indefinitely.
Unexpected references to the file, e.g. in globals or exception tracebacks,
may keep it
around longer than intended.

https://docs.python.org/3/library/mmap.html
https://docs.h5py.org/en/stable/high/file.html
https://matplotlib.org/2.1.0/api/_as_gen/matplotlib.pyplot.close.html

Relying on finalizers to do automatic cleanup that has observable side effects
has been
rediscovered over and over again to lead to major problems, across many
decades and multiple
languages (see e.g.
this article
for Java).

The preferred way to manage files and similar resources is using the
 with statement:

with open("hello.txt") as hello_file:

 for line in hello_file:

 print(line)

For file-like objects that do not support the with statement, use
 contextlib.closing() :

import contextlib

with contextlib.closing(urllib.urlopen("http://www.python.org/")) as front_page:

 for line in front_page:

 print(line)

In rare cases where context-based resource management is infeasible, code
documentation must
explain clearly how resource lifetime is managed.

3.12 TODO Comments

Use TODO comments for code that is temporary, a short-term solution, or
good-enough but not
perfect.

A TODO comment begins with the string TODO in all caps and a parenthesized
name, e-mail
address, or other identifier
of the person or issue with the best context about the problem. This is
followed
by an explanation of what there is to do.

The purpose is to have a consistent TODO format that can be searched to find
out how to get
more details. A TODO is not a commitment that the person
referenced will fix the problem. Thus
when you create a
 TODO , it is almost always your name
that is given.

TODO(kl@gmail.com): Use a "*" here for string repetition.

TODO(Zeke) Change this to use relations.

If your TODO is of the form “At a future date do something” make sure that you
either include a
very specific date (“Fix by November 2009”) or a very specific
event (“Remove this code when all
clients can handle XML responses.”).

3.13 Imports formatting

Imports should be on separate lines; there are
exceptions for typing imports.

https://wiki.sei.cmu.edu/confluence/display/java/MET12-J.+Do+not+use+finalizers
http://docs.python.org/reference/compound_stmts.html#the-with-statement

E.g.:

Yes: import os

 import sys

 from typing import Mapping, Sequence

No: import os, sys

Imports are always put at the top of the file, just after any module comments
and docstrings and
before module globals and constants. Imports should be
grouped from most generic to least
generic:

1. Python future import statements. For example:

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

See above for more information about those.

2. Python standard library imports. For example:

import sys

3. third-party module
or package imports. For example:

import tensorflow as tf

4. Code repository
sub-package imports. For example:

from otherproject.ai import mind

5. Deprecated: application-specific imports that are part of the same
top level
sub-package as
this file. For example:

from myproject.backend.hgwells import time_machine

You may find older Google Python Style code doing this, but it is no longer
required. New
code is encouraged not to bother with this. Simply treat
application-specific sub-package
imports the same as other sub-package
imports.

https://pypi.org/

Within each grouping, imports should be sorted lexicographically, ignoring case,
according to
each module’s full package path (the path in from path import
...). Code may optionally
place a blank line between import sections.

import collections

import queue

import sys

from absl import app

from absl import flags

import bs4

import cryptography

import tensorflow as tf

from book.genres import scifi

from myproject.backend import huxley

from myproject.backend.hgwells import time_machine

from myproject.backend.state_machine import main_loop

from otherproject.ai import body

from otherproject.ai import mind

from otherproject.ai import soul

Older style code may have these imports down here instead:

#from myproject.backend.hgwells import time_machine

#from myproject.backend.state_machine import main_loop

3.14 Statements

Generally only one statement per line.

However, you may put the result of a test on the same line as the test only if
the entire statement
fits on one line. In particular, you can never do so with
 try / except since the try and except
can’t both fit on the same line, and
you can only do so with an if if there is no else .

Yes:

 if foo: bar(foo)

No:

 if foo: bar(foo)

 else: baz(foo)

 try: bar(foo)

 except ValueError: baz(foo)

 try:

 bar(foo)

 except ValueError: baz(foo)

3.15 Getters and Setters

Getter and setter functions (also called accessors and mutators) should be used
when they
provide a meaningful role or behavior for getting or setting a
variable’s value.

In particular, they should be used when getting or setting the variable is
complex or the cost is
significant, either currently or in a reasonable future.

If, for example, a pair of getters/setters simply read and write an internal
attribute, the internal
attribute should be made public instead. By comparison,
if setting a variable means some state is
invalidated or rebuilt, it should be a
setter function. The function invocation hints that a
potentially non-trivial
operation is occurring. Alternatively, properties may be an
option when
simple logic is needed, or refactoring to no longer need getters and
setters.

Getters and setters should follow the Naming guidelines, such
as get_foo() and set_foo() .

If the past behavior allowed access through a property, do not bind the new
getter/setter
functions to the property. Any code still attempting to access the
variable by the old method
should break visibly so they are made aware of the
change in complexity.

3.16 Naming

module_name , package_name , ClassName , method_name , ExceptionName ,
 function_name ,
GLOBAL_CONSTANT_NAME , global_var_name , instance_var_name ,
 function_parameter_name ,
local_var_name .

Function names, variable names, and filenames should be descriptive; eschew
abbreviation. In
particular, do not use abbreviations that are ambiguous or
unfamiliar to readers outside your
project, and do not abbreviate by deleting
letters within a word.

Always use a .py filename extension. Never use dashes.

3.16.1 Names to Avoid

single character names, except for specifically allowed cases:

counters or iterators (e.g. i , j , k , v , et al.)
e as an exception identifier in try/except statements.
f as a file handle in with statements

Please be mindful not to abuse single-character naming. Generally speaking,
descriptiveness
should be proportional to the name’s scope of visibility.
For example, i might be a fine
name for 5-line code block but within
multiple nested scopes, it is likely too vague.

dashes (-) in any package/module name

__double_leading_and_trailing_underscore__ names (reserved by Python)

offensive terms

names that needlessly include the type of the variable (for example:
 id_to_name_dict)

3.16.2 Naming Conventions

“Internal” means internal to a module, or protected or private within a
class.

Prepending a single underscore (_) has some support for protecting module
variables and
functions (linters will flag protected member access).

Prepending a double underscore (__ aka “dunder”) to an instance variable
or method
effectively makes the variable or method private to its class
(using name mangling); we
discourage its use as it impacts readability and
testability, and isn’t really private. Prefer a
single underscore.

Place related classes and top-level functions together in a
module.
Unlike Java, there is no
need to limit yourself to one class per module.

Use CapWords for class names, but lower_with_under.py for module names.
Although there
are some old modules named CapWords.py, this is now
discouraged because it’s confusing
when the module happens to be named after
a class. (“wait – did I write import StringIO or
from StringIO import
StringIO ?”)

Underscores may appear in unittest method names starting with test to
separate logical
components of the name, even if those components use
CapWords. One possible pattern is
test<MethodUnderTest>_<state> ; for
example testPop_EmptyStack is okay. There is no One

Correct Way to name
test methods.

3.16.3 File Naming

Python filenames must have a .py extension and must not contain dashes (-).
This allows
them to be imported and unittested. If you want an executable to be
accessible without the
extension, use a symbolic link or a simple bash wrapper
containing exec "$0.py" "$@" .

3.16.4 Guidelines derived from Guido’s Recommendations

Type Public Internal

Packages lower_with_under

Modules lower_with_under _lower_with_under

Classes CapWords _CapWords

Exceptions CapWords

https://en.wikipedia.org/wiki/Guido_van_Rossum

Functions lower_with_under() _lower_with_under()

Global/Class Constants CAPS_WITH_UNDER _CAPS_WITH_UNDER

Global/Class Variables lower_with_under _lower_with_under

Instance Variables lower_with_under _lower_with_under (protected)

Method Names lower_with_under() _lower_with_under() (protected)

Function/Method Parameters lower_with_under

Local Variables lower_with_under

3.16.5 Mathematical Notation

For mathematically heavy code, short variable names that would otherwise violate
the style guide
are preferred when they match established notation in a
reference paper or algorithm. When
doing so, reference the source of all naming
conventions in a comment or docstring or, if the
source is not accessible,
clearly document the naming conventions. Prefer PEP8-compliant
descriptive_names for public APIs, which are much more likely to be
encountered out of

context.

3.17 Main

In Python, pydoc as well as unit tests require modules to be importable. If a
file is meant to be
used as an executable, its main functionality should be in a
 main() function, and your code
should always check if __name__ == '__main__'
before executing your main program, so that it
is not executed when the module
is imported.

When using absl, use app.run :

from absl import app

...

def main(argv: Sequence[str]):

 # process non-flag arguments

 ...

if __name__ == '__main__':

 app.run(main)

Otherwise, use:

def main():

 ...

if __name__ == '__main__':

 main()

https://github.com/abseil/abseil-py

All code at the top level will be executed when the module is imported. Be
careful not to call
functions, create objects, or perform other operations that
should not be executed when the file
is being pydoc ed.

3.18 Function length

Prefer small and focused functions.

We recognize that long functions are sometimes appropriate, so no hard limit is
placed on
function length. If a function exceeds about 40 lines, think about
whether it can be broken up
without harming the structure of the program.

Even if your long function works perfectly now, someone modifying it in a few
months may add
new behavior. This could result in bugs that are hard to find.
Keeping your functions short and
simple makes it easier for other people to read
and modify your code.

You could find long and complicated functions when working with
some
code. Do not be
intimidated by modifying existing code: if working with such a
function proves to be difficult, you
find that errors are hard to debug, or you
want to use a piece of it in several different contexts,
consider breaking up
the function into smaller and more manageable pieces.

3.19 Type Annotations

3.19.1 General Rules

Familiarize yourself with
PEP-484.
In methods, only annotate self , or cls if it is necessary for proper
type information. e.g.,
@classmethod def create(cls: Type[T]) -> T: return
cls()

If any other variable or a returned type should not be expressed, use Any .
You are not required to annotate all the functions in a module.

At least annotate your public APIs.
Use judgment to get to a good balance between safety and clarity on the
one hand,
and flexibility on the other.
Annotate code that is prone to type-related errors (previous bugs or
complexity).
Annotate code that is hard to understand.
Annotate code as it becomes stable from a types perspective. In many
cases, you can
annotate all the functions in mature code without losing
too much flexibility.

3.19.2 Line Breaking

Try to follow the existing indentation rules.

After annotating, many function signatures will become “one parameter per line”.

https://www.python.org/dev/peps/pep-0484/

def my_method(self,

 first_var: int,

 second_var: Foo,

 third_var: Optional[Bar]) -> int:

 ...

Always prefer breaking between variables, and not, for example, between variable
names and
type annotations. However, if everything fits on the same line, go for
it.

def my_method(self, first_var: int) -> int:

 ...

If the combination of the function name, the last parameter, and the return type
is too long,
indent by 4 in a new line.

def my_method(

 self, first_var: int) -> Tuple[MyLongType1, MyLongType1]:

 ...

When the return type does not fit on the same line as the last parameter, the
preferred way is to
indent the parameters by 4 on a new line and align the
closing parenthesis with the def .

Yes:

def my_method(

 self, other_arg: Optional[MyLongType]

) -> Dict[OtherLongType, MyLongType]:

 ...

pylint
allows you to move the closing parenthesis to a new line and align with the
opening
one, but this is less readable.

No:

def my_method(self,

 other_arg: Optional[MyLongType]

) -> Dict[OtherLongType, MyLongType]:

 ...

As in the examples above, prefer not to break types. However, sometimes they are
too long to be
on a single line (try to keep sub-types unbroken).

def my_method(

 self,

 first_var: Tuple[List[MyLongType1],

 List[MyLongType2]],

 second_var: List[Dict[

 MyLongType3, MyLongType4]]) -> None:

 ...

If a single name and type is too long, consider using an
alias for the type. The last resort is to
break after the
colon and indent by 4.

Yes:

def my_function(

 long_variable_name:

 long_module_name.LongTypeName,

) -> None:

 ...

No:

def my_function(

 long_variable_name: long_module_name.

 LongTypeName,
) -> None:

 ...

3.19.3 Forward Declarations

If you need to use a class name from the same module that is not yet defined –
for example, if
you need the class inside the class declaration, or if you use a
class that is defined below – use a
string for the class name.

class MyClass:

 def __init__(self,

 stack: List["MyClass"]) -> None:

3.19.4 Default Values

As per
PEP-008, use
spaces around the = only for arguments that have both a type annotation
and
a default value.

Yes:

def func(a: int = 0) -> int:

 ...

No:

def func(a:int=0) -> int:

 ...

https://www.python.org/dev/peps/pep-0008/#other-recommendations

3.19.5 NoneType

In the Python type system, NoneType is a “first class” type, and for typing
purposes, None is an
alias for NoneType . If an argument can be None , it
has to be declared! You can use Union , but if
there is only one other type,
use Optional .

Use explicit Optional instead of implicit Optional . Earlier versions of PEP
484 allowed a: str =
None to be interpreted as a: Optional[str] = None , but
that is no longer the preferred
behavior.

Yes:

def func(a: Optional[str], b: Optional[str] = None) -> str:

 ...

def multiple_nullable_union(a: Union[None, str, int]) -> str:

 ...

No:

def nullable_union(a: Union[None, str]) -> str:

 ...

def implicit_optional(a: str = None) -> str:

 ...

3.19.6 Type Aliases

You can declare aliases of complex types. The name of an alias should be
CapWorded. If the alias
is used only in this module, it should be _Private.

For example, if the name of the module together with the name of the type is too
long:

_ShortName = module_with_long_name.TypeWithLongName

ComplexMap = Mapping[str, List[Tuple[int, int]]]

Other examples are complex nested types and multiple return variables from a
function (as a
tuple).

3.19.7 Ignoring Types

You can disable type checking on a line with the special comment # type:
ignore .

pytype has a disable option for specific errors (similar to lint):

pytype: disable=attribute-error

3.19.8 Typing Variables

If an internal variable has a type that is hard or impossible to infer, you can
specify its type in a
couple ways.

Type Comments:
Use a # type: comment on the end of the line

a = SomeUndecoratedFunction() # type: Foo

Annotated Assignments
Use a colon and type between the variable name and value, as with function
arguments.

a: Foo = SomeUndecoratedFunction()

3.19.9 Tuples vs Lists

Typed lists can only contain objects of a single type. Typed tuples can either
have a single
repeated type or a set number of elements with different types.
The latter is commonly used as
the return type from a function.

a = [1, 2, 3] # type: List[int]

b = (1, 2, 3) # type: Tuple[int, ...]

c = (1, "2", 3.5) # type: Tuple[int, str, float]

3.19.10 TypeVars

The Python type system has
generics. The factory
function TypeVar is a common way to use
them.

Example:

from typing import List, TypeVar

T = TypeVar("T")

...

def next(l: List[T]) -> T:

 return l.pop()

A TypeVar can be constrained:

AddableType = TypeVar("AddableType", int, float, str)

def add(a: AddableType, b: AddableType) -> AddableType:

 return a + b

https://www.python.org/dev/peps/pep-0484/#generics

A common predefined type variable in the typing module is AnyStr . Use it for
multiple
annotations that can be bytes or unicode and must all be the same
type.

from typing import AnyStr

def check_length(x: AnyStr) -> AnyStr:

 if len(x) <= 42:

 return x

 raise ValueError()

3.19.11 String types

The proper type for annotating strings depends on what versions of Python the
code is intended
for.

Prefer to use str , though Text is also acceptable. Be consistent in using
one or the other. For
code that deals with binary data, use bytes . For Python
2 compatible code that processes text
data (str or unicode in Python 2,
 str in Python 3), use Text .

def deals_with_text_data_in_py3(x: str) -> str:

 ...

def deals_with_binary_data(x: bytes) -> bytes:

 ...

def py2_compatible_text_data_processor(x: Text) -> Text:

 ...

In some uncommon Python 2 compatibility cases, str may make sense instead of
 Text ,
typically to aid compatibility when the return types aren’t the same
between Python 2 and
Python 3. Never use unicode as it doesn’t exist in Python

1. The reason this discrepancy exists is because str means something different
in Python 2
than in Python 3.

No:

def py2_code(x: str) -> unicode:

 ...

If the type can be either bytes or text, use Union , with the appropriate text
type.

from typing import Text, Union

...

def py3_only(x: Union[bytes, str]) -> Union[bytes, str]:

 ...

def py2_compatible(x: Union[bytes, Text]) -> Union[bytes, Text]:

 ...

If all the string types of a function are always the same, for example if the
return type is the same
as the argument type in the code above, use
AnyStr.

3.19.12 Imports For Typing

For classes from the typing module, always import the class itself. You are
explicitly allowed to
import multiple specific classes on one line from the
 typing module. Ex:

from typing import Any, Dict, Optional

Given that this way of importing from typing adds items to the local
namespace, any names in
typing should be treated similarly to keywords, and
not be defined in your Python code, typed

or not. If there is a collision
between a type and an existing name in a module, import it using
import x as
y .

from typing import Any as AnyType

3.19.13 Conditional Imports

Use conditional imports only in exceptional cases where the additional imports
needed for type
checking must be avoided at runtime. This pattern is
discouraged; alternatives such as
refactoring the code to allow top level
imports should be preferred.

Imports that are needed only for type annotations can be placed within an if
TYPE_CHECKING:
block.

Conditionally imported types need to be referenced as strings, to be forward
compatible
with Python 3.6 where the annotation expressions are actually
evaluated.
Only entities that are used solely for typing should be defined here; this
includes aliases.
Otherwise it will be a runtime error, as the module will
not be imported at runtime.
The block should be right after all the normal imports.
There should be no empty lines in the typing imports list.
Sort this list as if it were a regular imports list.

import typing

if typing.TYPE_CHECKING:

 import sketch

def f(x: "sketch.Sketch"): ...

3.19.14 Circular Dependencies

Circular dependencies that are caused by typing are code smells. Such code is a
good candidate
for refactoring. Although technically it is possible to keep
circular dependencies, various build
systems will not let you do so
because each module has to depend on the other.

Replace modules that create circular dependency imports with Any . Set an
alias with a
meaningful name, and use the real type name from
this module (any attribute of Any is Any).
Alias definitions should be separated
from the last import by one line.

from typing import Any

some_mod = Any # some_mod.py imports this module.

...

def my_method(self, var: "some_mod.SomeType") -> None:

 ...

3.19.15 Generics

When annotating, prefer to specify type parameters for generic types; otherwise,
the generics’
parameters will be assumed to be Any .

def get_names(employee_ids: List[int]) -> Dict[int, Any]:

 ...

These are both interpreted as get_names(employee_ids: List[Any]) -> Dict[Any, Any]

def get_names(employee_ids: list) -> Dict:

 ...

def get_names(employee_ids: List) -> Dict:

 ...

If the best type parameter for a generic is Any , make it explicit, but
remember that in many
cases TypeVar might be more
appropriate:

def get_names(employee_ids: List[Any]) -> Dict[Any, str]:

 """Returns a mapping from employee ID to employee name for given IDs."""

T = TypeVar('T')

def get_names(employee_ids: List[T]) -> Dict[T, str]:

 """Returns a mapping from employee ID to employee name for given IDs."""

4 Parting Words

BE CONSISTENT.

If you’re editing code, take a few minutes to look at the code around you and
determine its style.
If they use spaces around all their arithmetic operators,
you should too. If their comments have

https://www.python.org/dev/peps/pep-0484/#the-any-type

little boxes of hash marks around them,
make your comments have little boxes of hash marks
around them too.

The point of having style guidelines is to have a common vocabulary of coding so
people can
concentrate on what you’re saying rather than on how you’re saying
it. We present global style
rules here so people know the vocabulary, but local
style is also important. If code you add to a
file looks drastically different
from the existing code around it, it throws readers out of their
rhythm when
they go to read it. Avoid this.

	what_is_PEP
	PythonStyleGuidePEP8

