

Python is an object-oriented programming language. Objects are the core things that

Python programs manipulate. All data in a Python program is represented by objects or by

relations between objects.

Every object in Python is assigned a unique identity (ID) which remains the same for the

lifetime of that object. The built-in function id() returns the identity of an object.

The built-in function type() returns the type of an object.

An identifier is just a valid name that is a nonempty sequence of characters of any length that

consists of a “start character” and zero or more “continuation characters” that adheres to

the following rules.

The start character should be a Unicode letter or an underscore (“_”)

Each continuation character can be a Unicode letter or an underscore (“_”) or a digit

Unicode letters consist of alphabets of non-English languages, but non-English alphabet

should be avoided unless its usage is a necessity for customization or localization

Avoid using the names of any of Python’s predefined identifiers, built-in data types

(int, float, list, str, tuple etc.) and built-in functions or exceptions.

A variable in a program is uniquely identified by a valid, unique name (identifier).

A variable in Python refers to an object that is stored in the memory, so variable is just

“a name given to a memory location” (a reference or pointer to an object)

Variable declaration is implicit in Python (Variables are created automatically when

they’re first assigned a value)

Variables must be created before they are used

It is conventional to use identifiers with lower case letters and underscores as variables

names.

Python does not have the concept of constants, so it is conventional to use identifiers

with UPPER case letters and underscores to represent constants.

In Python variables are just names (or labels or tags) that refer to objects in the Python

interpreter’s namespace.

Any number of variables can refer to the same object, and when that object changes, the

value referred to by all of those variables also changes.

While running a python program, computer memory gets divided into different sections:

Global/Static Variables

Heap

Stack

Code

Code section of the memory stores code in the machine-readable form. Python interpreter

loads functions and local variables in the Stack, Global Variables in the Global Variables

segment of the memory, and objects into the heap section of the memory

Python interpreter actively allocates and deallocates the memory on the Heap to

store/destroy objects and uses a garbage collection algorithm (called Garbage

Collector) that keeps the Heap memory tidy as it removes objects that are not needed

anymore or went out of scope

Python interpreter load functions and local variables (references only) in the Stack. Stack

memory is static (the size of values stored in the Stack cannot be changed) and

temporary (as soon as the called function returned its value, the function and the related

variable will be removed from the Stack). Python interpreter and OS memory

management together keeps stack tidy.

To create a variable, we need a valid name (identifier). Let’s call our variable price

Variables are created automatically when they’re first assigned a value. Python uses =

as the assignment operator. Let’s assign 2000 to price

Python creates an int object (since 2000 is an integer) stores it on heap and gives the

address of that storage location to price

We can see how python bytecode is disassembled by importing dis module

