Python
Bootcamp
& Masterclass

3dd

str

Python handles text data with a string object called str
A string (str) is a sequence of characters and is immutable

Strings should be delimited by single quotes (') or double quotes (" ") or

triple single quotes (), or triple double quotes () and can contain

tab (\t) and newline (\n) characters.

greetingl = 'Hello’

greeting2 = "Hello Python"

greeting3 = '''Hello Python World'''

greeting4 = """Hello\tPython\tWorld\nWelcome""" # \t puts a tab and \n puts g new line
print(greetingl)

print(greeting2)

print(greeting3)

print(greeting4)

Hello

Hello Python

Hello Python World
Hello Python World
Welcome

‘Y*gknxt

String delimiters

The quotes surrounding a string are called delimiters because they tell
Python where a string begins and where it ends. When one type of quotes is
used as the delimiter, the other type of quote can be used inside of the
string

When only one type of quotes need to be used, escape character (\) can be

used to tell Python that all the middle quotes are not delimiters

india_gdp = "India's GDP is $3.1 trillion in 221"
india_gdp

"India's GDP is $3.1 trillion in 221"

india_gdp = 'India\'s GDP is $3.1 trillion in 2@21°
india_gdp

"India's GDP is $3.1 trillion in 2021"

‘Y*gknxt

Multiline Strings

The PEP 8 style guide recommends that each line of Python code contain no
more than 79 characters - including spaces.

When long strings exceeding 79 characters need to be created, they can be
broken into multiple lines by using escape character (\) if formatting is not an

issue, or triple quotes if formatting need to be preserved

textl = "String delimiters can be of four types:\
1. Single Quotes \

2. Double Quotes \

3. Triple Single Quotes\

4. Triple Double Quotes™

print(textl)

String delimeters can be of four types:1. Single Quotes 2. Double Quotes 3. Triple Single Quotes4. Triple Double Quotes

text2 = '''String delimiters can be of four types:
1. Single Quotes

2. Double Quotes

3. Triple Single Quotes

4, Triple Double Quotes'''

print(text2)

String delimeters can be of four types:
1. Single Quotes

2. Double Quotes

3. Triple Single Quotes

4. Triple Double Quotes

‘Y*gknxt

String Interning

All string objects of exact same character sequence of alphanumeric characters only are
shared for execution efficiency. If there are a few string variables whose values are the
same, they will be interned by Python implicitly and refer to the same object in the memory
to save space and time in string comparison. Starting from Python version 3.7, strings with
more than 4096 characters will not be interned as per the AST Optimizer

(https://github.com/python/cpython/blob/3.7/Python/ast_opt.c)

greeting = "Welcomel23"

salutation = "Welcomel23"

welcome_msg = "Welcome 123" # has one non-alphanumeric character - space
print(“"greeting obj id = ", id(greeting))

print(“"salutation obj id = ", id(salutation))

print("welcome_msg obj id = ", id(welcome_msg))

greeting obj id = 1953379690480

salutation obj id = 1953379690480

welcome_msg obj id = 1953379083504

‘Ygknxt

Python has a built-in function that we can use to intern a string explicitly. It is the intern()

function in the sys module. Explicit interning can be used to overcome 4096 character limit.

a = "K' ¥ 4096 # https://github.com/python/cpython/blob/3.7/Python/ast_opt.c
b = "K' ¥ 4096 # implicit string interning
print("a obj id = v, id(a))

print("b obj id = ", id(b))

a obj id = 1953368198976

b obj id = 1953368198976

c = "K' ¥ 40897

d = 'K' * 4097

print("c obj id = ", id(c))

print("d obj id = ", id(d))

c obj id = 1953369707440

d obj id = 1953369407968

import sys

e = sys.intern('K' * 4897) # explicit string interning

print("e obj id ", id(e))

K
f = sys.intern('K' * 4097)
print("f obj id = ", id(f))

e obj id
f obj id

1953369143376
1953369143376

‘Y*gknxt

String Unpacking

The asterisk (*) operator can be used to unpack iterable objects, and double asterisk (**)
operator can be used to unpack dictionaries. Strings are sequences and iterable objects.

Unpacking a string breaks the string into the individual characters.

country = 'USA'

print(country)

print(*country) #string unpacking with default sep (space)
print(*country, sep=".", end=".") #string unpacking with default '.' sep
USA

UsSaA

U.S.A.

Ygknxt

String Concatenation

The + operator can be used to explicitly concatenate (join together) string objects.

Python implicitly concatenates two strings if they are just separated by space(s).

sci = 'Albert' ' ' 'Einstein' #implicit concatenation
sci

'"Albert Einstein'

mahatma = 'Mohandas' + ' ' + 'K' + ' ' + 'Gandhi' #explicit concatenation
mahatma

'"Mohandas K Gandhi'

‘Ygknxt

o © o
String Replication
The sk operator (asterisk) can be used to replicate (multiply) string objects by using it

with a non-empty string and a positive integer.

s = 'Hello! *
s * 3

'Hello! Hello! Hello! '
t = "Hi!

3%t

"Hi! Hil Hil! '

u = 'Byel!’
u*ae

v = 'Farewell’
v * -4

w = 'Goodbye’
w * True

'Goodbye"

‘Ygknxt

String indexing

String is a sequence, so it has a numbered position called an index. In Python indexing starts

at 0 (largest index in a string is always one less than the string’s length)
Each character in a string can be accessed by placing the index in item access operator ([])

Strings can be accessed in the reverse order by using negative indices starting with -1 (The

last character in a string has index -1, the second-to-last character has index -2, and so on)

1 2 3 4 5 6 7 8 9 10 mn 12131415 16 17 18 19 20 21

the crazy owl is dumb'

-22 -21 -20 -1? -18 -17 -16 -15 -14 -13 -12 -1 -10 -9 -8 -7 -6 -

‘Y*gknxt

2 3 4 5 6 7 8 9 10 mn 121314 15 16 17 18 19 20 21

the crazy owl is dumb'

-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -1 -10 -9 -8 -7 -6 - -1

s = 'the crazy owl is dumb!'’
s[e]

s[1]

s[21]

s[-1]

s[-22]

Itl
Ihl

‘Ygknxt

Accessing an index beyond the end of a string or a negative index less than the index of the

first character in the string results in an IndexError

2 3 4 5 6 7 8 9 10 1 1213 14 15 16 17 18 20 21

the crazy owl is dumb'

-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10-9 -8 -7 -6 -5 -4 - 2 -1
t = "the crazy owl is dumb!
t[22]
Indexerror Traceback (most recent call last)

<ipython-input-7-34f491634055> in
1t = "the crazy owl is dumb!’
---> 2 t[22]

IndexError: string index out of range

u = "the crazy owl is dumb!
u[-23]

IndexError Traceback (most recent call last)
<ipython-input-8-f27ddebsegi4> in
1 u = '"the crazy owl is dumb!’
---> 2 u[-23]

IndexError: string index out of range

‘Ygknxt

String Slicing
An entire slice (subsequence) of characters can be extracted from a string using the slice

operator ([]) and colon(s) to separate optional start, optional stop and optional step options.

2 3 4 5 6 7 8 9 10 n 12131415 16 17 18 19 20 21

the crazy owl is dumb'

-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -1 -10 -9 -8 -7 -

seq[start:stop: step]

default: %) len(seq) 1
‘Ygknxt

str[start : stop : step]

HELLOWORLD'[1 : 5 : 1]
step
®©®@O@z O®LOV
®E0LLE
start stop L.

Ygknxt

str[start : stop : step]

HELLO WORLD![: 11 : 2]
2

“e"@)@@@@/o\wf? /@?@ O

¢ 9 1miln

start HOOWER@ stop

Ygknxt

the crazy owl is dumb! seq[start:stop: step]

-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -1 -10-9-8 -7 -6 -5 -4 -3

"default: @ len(seq) 1
x = 'the crazy owl is dumb!’
x[:]
x[::]
x[0:]
x[:22]
x[::1]
x[0:22]
x[0:22:1]

'the crazy owl is dumb!'’
'the crazy owl is dumb!'’
'the crazy owl is dumb!'’
'the crazy owl is dumb!'’
'the crazy owl is dumb!'’
'the crazy owl is dumb!’

'the crazy owl is dumb!'’

‘Ygknxt

Entire string slicing, from start to end, will just create a new reference, not a new object.

If a part of the string is sliced, not the entire string, a new object will be created

the crazy owi'is dumbi Sedlstartistop:step]

=22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 - default: 0 Ien(seq) 1
X = 'the crazy owl is dumb!’ t = 'the crazy owl is dumb!'’
id(x) u=t[:]
id(x[:]) v =t[: : 2]
id(x[::1) w=t[:20:]
id(x[@:22:1]) x = t[1:]
u=x[::] y = t[: 100:]
v = X[0:22:1] id(u)
id(u) id(v)
id(v) id(w)
id(x)
1521937613728 id(y)
1521937613728 2165684511728
1521937613728 2165684589296
1521937613728 2165684561360
1521937613728 2165684512368
1521937613728 2165684511728

‘Y*gknxt

If the step is negative, slicing will be in the reverse order and reverse index starts at -1

seql : :-1]

B E D ED D EPED EH R ED
nopqrstuvw
G €165 6163616 €Y

Ygknxt

x = 'abcdef'
x[@ : =1]

'fedcba'

‘gknxt

Ygknxt

X = abcdefghljk

ﬂd(}f X

+gknxt

*gknxt

x = 'abcdefghijklmnop'
x o .-3 X[¢ 2 =3]
® ©
"pmjgda’

bcefﬁm

Ygknxt

° ® x = 'abcdefghijklmnopgrstu’
x ° .-4 x[: : -4]

"ugmiea’

Ygknxt

Any or all three indices (start, stop and step) can be beyond the range for the sequence.
If the start is out of range, empty string will return.

If the stop is out of range, it will default to the length of the sequence.

the crazy owl is dumbi Sedlstart:stop:step]

-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 3 2 -1 default 0 Ien(seq) 1

x = 'the crazy owl is dumb!’

x[100:] # 1f the start is out of range, empty string will be the slice

x[-100: : -1] # 1f the start is out of range for reverse indexing, empty string will be the slice

x[:100] # 1f the stop is out of range, stop defaults to lLength of sequence

x[: -100: -1] # 1f the stop is out of range for reverse indexing, stop defaults to -(length of sequence + 1)
x[: : 100] # step can also be out of range

'the crazy owl is dumb!'’
"Ibmud si lwo yzarc eht'

ltv

‘Ygknxt

Slicing can be chained. A new string object is created when you reverse a string

the crazy owi'is dumbi Seqlstart:stop:step]

22 -21 20 119 -18 <17 <16 -15 <14 13 12 -m -10-9-8 -7 6 -5 -4 -3 -2 -1 default: 0 |en(seq) 1

X = "the crazy owl is dumb!’'
r=x[:: -1]

y = x[::-1][::-1]

print(r)

print(x)

print(y)

id(r)

id(x)

id(y)

!bmud si lwo yzarc eht
the crazy owl is dumb!
the crazy owl is dumb!

1403571343728
1483571346128
1403571402912
s = '"the crazy owl is dumb!'’

s[e:-1][::-5]
s[::-17[::-2]

"trosb’

'tecayoli ub'’

‘Ygknxt

immutability

Python strings are immutable (cannot be modified after creation)

k = '"Tomatoe'
k[e] = '!" # as string is immutable, modification is not allowed
TypeError Traceback (most recent call last)
<ipython-input-1-44feec783clc> in

1 k = 'Tomatoe'
----> 2 k[6e] = "I'"

TypeError: 'str' object does not support item assignment

word = "uma"
print(word, id(word))
word = "p" + word[:]

print(word, id(word))

uma 1403571424176
puma 1403571424752

‘Ygknxt

Resources

For best python resources, please visit:

@ gknxt.com/python/

Ygknxt

Python
Bootcamp
& Masterclass

Than

for your Ratir

