

Strings should be delimited by single quotes (' ‘) or double quotes (" ") or

trip le single quotes (' ' ' ' ' ') , or triple double quotes (""" "" ") and can contain

tab (\t) and newline (\n) characters .

The quotes surrounding a string are cal led delimiters because they tel l

Python where a string begins and where it ends. When one type of quotes is

used as the delimiter, the other type of quote can be used inside of the

str ing

When only one type of quotes need to be used, escape character (\) can be

used to tel l Python that a l l the middle quotes are not del imiters

The PEP 8 style guide recommends that each line of Python code contain no

more than 79 characters - including spaces.

When long strings exceeding 79 characters need to be created, they can be

broken into multip le l ines by using escape character (\) i f formatting is not an

issue, or tr ip le quotes if formatt ing need to be preserved

All string objects of exact same character sequence of alphanumeric characters only are

shared for execution efficiency. If there are a few string variables whose values are the

same, they will be interned by Python implicitly and refer to the same object in the memory

to save space and time in string comparison. Starting from Python version 3.7, strings with

more than 4096 characters will not be interned as per the AST Optimizer

(https://github.com/python/cpython/blob/3.7/Python/ast_opt.c)

Python has a built-in function that we can use to intern a string explicitly. It is the intern()

function in the sysmodule. Explicit interning can be used to overcome 4096 character limit.

The asterisk (*) operator can be used to unpack iterable objects, and double asterisk (**)

operator can be used to unpack dictionaries. Strings are sequences and iterable objects.

Unpacking a string breaks the string into the individual characters.

The + operator can be used to explicitly concatenate (join together) string objects.

Python implicitly concatenates two strings if they are just separated by space(s).

The* operator (asterisk) can be used to replicate (multiply) string objects by using it

with a non-empty string and a positive integer.

String is a sequence, so it has a numbered position called an index. In Python indexing starts

at 0 (largest index in a string is always one less than the string’s length)

Each character in a string can be accessed by placing the index in item access operator ([])

Strings can be accessed in the reverse order by using negative indices starting with -1 (The

last character in a string has index -1, the second-to-last character has index -2, and so on)

Accessing an index beyond the end of a string or a negative index less than the index of the

first character in the string results in an IndexError

An entire slice (subsequence) of characters can be extracted from a string using the slice

operator ([]) and colon(s) to separate optional start, optional stop and optional step options.

Entire string slicing, from start to end, will just create a new reference, not a new object.

If a part of the string is sliced, not the entire string, a new object will be created

If the step is negative, slicing will be in the reverse order and reverse index starts at -1

Any or all three indices (start, stop and step) can be beyond the range for the sequence.

If the start is out of range, empty string will return.

If the stop is out of range, it will default to the length of the sequence.

Slicing can be chained. A new string object is created when you reverse a string

Python strings are immutable (cannot be modified after creation)

