Python
Bootcamp
& Masterclass

meth

gk nxt

Find()

The .find(sub,start,) method returns the lowest index in the string where the
substring (sub) is found starting at start (optional) up to (optional). Returns -1 if sub
is not found (start and behave the same way as they do in slicing)

The .find() works only with strings, not with other sequences.

k = "It was the best of times, it was the worst of times’ # 51 character string

k.find(was"') # sub = 'was' (present twice: at 3 and 29 positions in the string)
k.find("its"') # sub = 'its' (not present in the string)

k.find('was', 4) # sub = 'was', start = 4

k.find('time', 10, 30) # sub = 'time', start = 10, end = 386

k.find("'st', 300) # sub 'st', start = 360 (start is out of range)

k.find("'st', 25, 360) # sub 'st', start = 25, end = 300 (end is out of range)
k.find("'st', 1@0, 300) # sub = 'st', start = 166, end = 300 (start and end are out of range)

3

-1
29
19
-1
40

-1

‘Ygknxt

The .rfind(sub,start,
substring (sub) is found starting at start (optional) up to

not found (start and

.rfind()

) method returns the highest index in the string where the

(optional). Returns -1if sub is

behave the same way as they do in slicing)

The .find() works only with strings, not with other sequences.

AR AR KA A RARX

rfind("

= 'It was the best of times,
was') # sub
its') # sub
was', 2, 20) # sub

rfind(’
.rfind(’
rfind("
rfind(’
rfind("
rfind(’

time', 10, 30) # sub
st', 300) # sub
st', 25, 3@0) # sub
st', 1ee, 300) # sub

it was the worst of times' # 51 character string

'was' (present twice: at 3 and 29 positions in the string)
'its' (not present in the string)
'was', start = 2, end = 20
'time', start = 18, end = 3@
'st', start = 300 (start is out of range)

'st', start = 25, end = 309 (end is out of range)
'st', start = 100, end = 308 (start and end are out of range)

‘Ygknxt

.count()

The .count(sub,start,) method returns the number of non-overlapping
occurrences of substring sub (start and behave the same way as they do in slicing)
If multiple counting for a single character is needed, Counter from collections module

could be a better option

my_str = "It was the best of times, it was the worst of times"
my_str.count('t")

my_str.count('t', 6)

my_str.count('t', 6, 30)

my_str.count('time', 6, 300)

8

7

4

2

from collections import Counter

my_str = "It was the best of times, it was the worst of times"
counter = Counter(my_str)

print (counter['m'])

print(counter)

2
Counter({"' ': 11, 't': 8, 's': 6, 'e': 5, 'w': 3, '0o': 3, 'i': 3, 'a': 2, 'h': 2, 'f': 2, 'm': 2, 'I': 1, 'b": 1, ',': 1,

1))
‘ gk nx

.startswith()

The .startswith(x,start,) method returns True if the string starts with str x or

with any of the strings in tuple x; otherwise, returns False.

ws = "https://gknxt.com"
ws.startswith('https:")
ws.startswith(('https:', "http:', "www.'))

True

True

‘Ygknxt

.endswith()

The .endswith(x,start,) method returns True if the string ends with str x or

with any of the strings in tuple x; otherwise, returns False.
img = "gknxt.png"

img.endswith('png")

img.endswith(('png', 'jpeg', 'jpg', 'JPEG', 'JPG'"))
True

True

‘Ygknxt

-reversed()

The reversed(i) function returns an iterator that returns the items from iterator i in
reverse order. The iterator yields characters directly from the original string (doesn’t create

a new reversed string), so it is efficient in terms of memory usage and speed.

greet = reversed("Hello") for
print(greet)
next(greet)
next(greet)
next(greet)
next(greet)
next(greet)
next(greet) # StopIteration Error if the iterator is accessed out of its range

_ in reversed("Hello"):
print(_)

D +—HO

<reversed object at @x@0@ROLFFC26195E0>

StopIteration Traceback (most recent call last)
<ipython-input-19-46834bc95541> in

6 next(greet)

7 next(greet)
----> 8 next(greet) # StopIteration Error if the iterator is accessed out of its range

‘Ygknxt

StopIteration:

® @
join()
The .join(seq) method returns the concatenation of every item in the sequence seq,
with string (which can be empty) between each one. A TypeError will be raised if there

are any non-string values in seq. To concatenate a sequence of strings, .join(seq) is

the preferred and faster way than string concatenation using + operator.

'z'.join(['a','b", 'c']) *ein(('a’, 2, 'z'))
Ltajodn((tat, tz'))
'J‘ join(['a']) TypeError Traceback (most recent call last)
e L Denl Oapd Jear * <ipython-input-61-57ae3d4de8a8> in

Sjoin(('x','y","'z"))*3 —--> 1t jein((at, 2, "z'))

L gein(('x', "y, 12"))*3

...... TypeError: sequence item 1: expected str instance, int found

1 1
azbzc greeting = "Hello!"
. . "".join(reversed(greeting))
a,z
'lolleH’
'3

'Xyzxyzxyz'
'x#ty#zx#y#Hzx#y#z'

' x*y*z*x*y*z !

‘Y*gknxt

split()

The .split(sep=None, maxsplit=- 1) method returns a list of the words in the string,

using sep as the delimiter. If maxsplit is given, at most maxsplit splits are done (the

resulting list will have at most maxsplit+1l elements). If maxsplit is not specified or -1,

then all possible splits are made.

c'.split()
c'.split(',")
c'.split(',"', 1)
>3, .split(’, ")
3'.split()

2 3 ‘.split()

record = "Mahatma Gandhi*1869-10-82*1948-61-30"

record.split()

record.split('*")

record.replace(’ ',"*').split('*') # re is more suitable for multi-char splits

['Mahatma', 'Gandhi*1869-18-02*1948-01-3@']

['Mahatma Gandhi', '1869-10-02', '1948-01-30']
['Mahatma', 'Gandhi', '1869-18-02', '1948-01-30']
record = "Mahatma Gandhi*1869-10-62*1948-61-30"
print(record.split("*")[0] + " lived about " +

str(int(record.split("*")[2].split("-")[@]) -
int(record.split("*")[1].split("-")[@])) + " years")

Mahatma Gandhi lived about 79 years

‘Ygknxt

rspl

it()

The .rsplit(sep=None, maxsplit=- 1) method returns a list of the words in the string,

using sep as the delimiter. If maxsplit is given, at most maxsplit rightmost splits are

done. If maxsplit is not specified or -1, then all possible splits are made.

4
k]
3'.rsplit()
2

3

'.rsplit()

record

record.
record.
record.

record

= "Mahatma Gandhi*1869-16-82*1948-61-30"
rsplit()

rsplit('*")

rsplit('*', 2)

.replace(' ',"*").rsplit('*') # re is more suitable for multi-char splits

['Mahatma', 'Gandhi*1869-10-02*%1948-01-30"]

['Mahatma Gandhi', '1869-10-02', '1948-01-39']

['Mahatma Gandhi', '1869-16-02', '1948-01-30']

['Mahatma', 'Gandhi', '1869-10-82', '1948-01-30']

‘Ygknxt

.splitlines()

The .splitlines(keepends=False) method returns a list of the lines, breaking at line
boundaries. Line breaks are not included in the resulting list unless keepends is set to True.
Windows uses carriage return + line feed for newline ("\r\n’) and UNIX uses line feed for

newline (\n’) Mac’s newline depends on the version of Mac OS

s = "ab c\n\nde fg\r\nkI\r\n' u = 'One line\n'

print(s) # ab ¢ on Linel, two blank lines, de fg Line 4, RL on Line 5 v = 'One line\nAnotherline'

s.splitlines() print(u) # prints One line and then a blank Lline below
s.splitlines(True) u.splitlines()

u.splitlines(True)

ab c v.splitlines()
v.splitlines(True)

de fg

k1 One line

['ab c¢', "', 'de fg', 'kl'] ['One line']

['ab c\n', "\n', 'de fg\r\n', "kl\r\n'] ['One line\n']
['One line", 'Ancotherline']

t =

t.splitlines() ['One line\n', 'Anotherline']

[1

‘Y*gknxt

Resources

For best python resources, please visit:

@ gknxt.com/python/

Ygknxt

Python
Bootcamp
& Masterclass

Than!

for your Ratin:

rgknXxt

