

Python's container objects contain references (memory addresses) of

their objects, not the objects themselves. So, when a tuple is created with

x objects, it only has references of those x objects. I t does not know what

those objects are.

General ly, tuples are enclosed in a pair of parentheses (a lso called round

brackets) , but parentheses are optional .

Python’s creator intended lists for homogenous data and tuples for

heterogenous data. Tuples are Python's way of packaging heterogeneous

pieces of information in a composite object.

For example, socket = ('www.python.org' , 80) brings together a string and

a number so that the host/port pair can be passed around as a socket, a

composite object

An empty tuple can be created by using tuple constructor, tuple () or by

using a pair of parentheses with no values in them.

A tuple with just one element (singleton tuple) can be created by using a

pair of parentheses with the value in them.

Though a tuple is immutable, it can contain mutable objects. For example,

i t can contain one or more lists. I f one of those lists is modified, i ts

reference that is kept in the tuple does not change. So, the tuple would

not even get notified of the change (the list doesn't know whether it is

referred to by a variable, a tuple, or another l ist) .

If a tuple needs to be deleted, del keyword can be used. A tuple can be emptied (delete all

elements) by assigning an empty tuple to it. Another way to empty a tuple is by assigning

the product of the tuple and 0 to the tuple itself.

A tuple is a sequence, so each item in a tuple has a numbered position called index that

starts at 0 Elements of a tuple can be accessed in the reverse order by using negative index

starting with -1 (last element has index -1, second-to-last element has index -2, and so on)

A slice can be extracted from a tuple using the slice operator ([]) and colon(:) to

separate start, stop and step options as integers (step cannot be zero)

Mult ip l icat ion operator (*) can be used to repl icate tuples by a factor .

Tuples can be concatenated by using concatenation operator (+) or

Itertools.chain() method. To concatenate multip le tuples, the

preferred way is to use unpacking operator (*)

Since tuples do not have sort method, the bui lt- in sorted function can be

used for sort ing tuples

Since tuples do not have reverse method, the bui lt- in reversed function

can be used for reversing tuples

Tuple constructor function tuple() can be used to convert a list into a tuple

Tuple constructor function tuple() can be used to convert a string into a tuple

Sequences of the same type also support comparisons. In particular, tuples and lists are

compared lexicographically by comparing corresponding elements. If the first elements

are comparable and different, comparison is over. If the first elements are comparable and

same, then only comparison continues to the next element(s)

Assignment statements in Python do not create copies - they only bind

names to objects . Sometimes copies of mutable objects or collections of

mutable objects would be needed for data processing.

A shallow copy constructs a new compound object (objects that

contain other objects) and then (to the extent possible) inserts

references into i t to the objects found in the original .

A shallow copy can be created in many ways.

A deep copy constructs a new compound object and then, recursively,

inserts copies into it of the objects found in the origina l . So, deep copy

creates a new copy at a different memory location with no connection to

the origina l object whatsoever. I t can be created with the deepcopy()

method from the copy module .

The tuple.index(x [, i [, j]]) method returns the first occurrence

of x in the tuple (at or after index i and before index j) I t is one of the

only two methods of tuple (count is the other)

I t ra ises ValueError i f x i s not in the tuple

The tuple.count(x) method returns the tota l number of occurrences of

x in the tuple . I t is one of the only two methods of tuple (index is the other)

The sum(iterable, start=0) bui lt- in function returns the tota l of items

in the iterable starting with start , i f given. This method should not be

used for concatenation, as there are eff ic ient a lternatives avai lable for that .

The bui lt- in function len(iterable) returns the length (the number of

i tems) of the iterable . The length of an empty tuple is 0

The bui lt- in function min(iterable) returns the smal lest object of the

iterable . I f the objects are not comparable, TypeError wil l be raised.

The bui lt- in function max(iterable) returns the largest object of the

iterable . I f the objects are not comparable, TypeError wil l be raised.

The in and not in operators can be used to test whether a value is in a

tuple or not.

