

A set is an unordered col lection of unique and hashable objects. (So,

l i sts. sets and dictionaries cannot be members of a set. A tuple can

be a member if and only i f a l l i ts e lements are immutable). Though all

i ts e lements need to be hashable, the set i tself is not hashable .

A non-empty set can be created by placing either a comma-

separated list of elements or an iterator within a pair of curly braces

({ }) A set can also be created using the set constructor (set())

The elements of a set must be unique, so if a set is created with duplicate

elements, al l the duplicates wi l l be deleted. Any attempt to add a duplicate

element wi l l not be honored after a set was created.

Being an unordered col lection, sets do not record element position or

order of insertion. Accordingly, sets do not support indexing, s l icing,

or any other sequence-dependent behavior .

Since the elements of a set are unordered, modifying an element is not

possible . However, the element that need to be modified can be

deleted and the modif ied version of that element can be added.

There are three ways to delete an element from a set:

remove(x) removes element x from the set. Raises KeyError i f x is

not contained in the set .

discard(x) removes element x from the set if i t is present. I t does

nothing if x i s not contained in the set. Returns None

pop() removes and returns a random element from the set. I f the set

i s empty, i t ’ l l ra ise a KeyError .

clear() removes al l e lements from the set. Another way to remove al l the

elements of a set is to make it equal to an empty set.

del keyword deletes the entire set, so the set wi l l no longer be accessible.

A string is a sequence type, whose elements are simply its individual

characters. Since the set() constructor takes a sequence and converts i ts

elements to its set i tems, passing a string to the set() constructor creates

a set of the str ing's indiv idual characters after removing any dupl icates .

difference(*others)

returns a new set with

elements in the set

that are not in the

others

The overloaded minus

operator (-) can be

used in place of

difference(*others)

difference(*others) returns a new set with elements in the set that are

not in the others , without modify ing the exist ing set.

difference_update(*others) returns None and updates the set in place,

removing elements found in others .

symmetric_difference(other)

returns a new set with elements

in either the set or other but not

both. (other can only be a set,

not mult ip le sets)

Unlike symmetric_difference ,

over loaded bitwise XOR

operator (^) can be used on

mult ip le sets

symmetric_difference(other) returns a new set with elements in either

the set or other but not both, without modify ing the exist ing set .

symmetric_difference_update(other) returns None and updates the

set, keeping only elements found in either the set or other , but not in both.

union(*others)

returns a new set with

elements from the set

and al l others

The overloaded bitwise

OR operator (|) can be

used in place of the

union(*others)

union(*others) returns a new set with elements from the set and al l

others without modify ing the exist ing set.

update(*others) returns None and updates the set in place adding

elements from al l others .

intersection(*others)

returns a new set with

elements common to the

set and al l others

The over loaded bitwise

AND operator (&) can be

used in place of the

intersection(*others)

intersection(*others) returns a new set with elements common to the

set and al l others without modify ing the exist ing set.

intersection_update(*others) returns None and updates the set in

place with elements common to the set and al l others .

isdisjoint(other) returns True i f the set has no elements in common

with other. Sets are disjo int i f and only if their intersection is the empty set.

There is no operator that corresponds to the . isdis joint() method.

issubset(other) returns True i f

every element in the set is in other . The

symbol <= corresponds to subset

and < corresponds to proper subset .

issuperset(other) returns True i f

every element in the other is in set.

The symbol >= corresponds to

superset and > corresponds to

proper superset.

The non-operator versions of union() , intersection() , difference() ,

symmetric_difference() , issubset() , and issuperset() methods wi l l

accept any iterable as an argument. In contrast, their operator based

counterparts require their arguments to be sets.

The > operator is the only way to test whether a set is a proper superset

or not. There is no corresponding method.

The < operator is the only way to test whether a set is a proper subset or

not. There is no corresponding method.

The copy() method returns a shal low copy of the set. Deep copy

doesn’t make any sense for sets because sets are only a l lowed to contain

immutable objects.

The in and not in operators can be used to test whether a value is in a

set or not.

