

A frozenset is an unordered col lection of unique and hashable

objects. (So, l ists and dictionaries cannot be members of a frozenset.

A tuple can be a member if and only i f a l l i ts members are immutable)

A frozenset is immutable and hashable .

A frozenset has to be created using the frozenset() function.

The elements of a frozenset must be unique, so if a frozenset is created

with duplicate elements, a l l the duplicates wi l l be removed. Since a

frozenset is immutable, adding/delet ing/updating elements is not a l lowed.

The only way to remove al l the elements of a frozenset is to make it equal to an

empty set / frozenset, so a new object with the same identif ier wi l l be created.

del keyword deletes the entire frozenset .

A string is a sequence type, whose elements are simply its individual

characters. Since the frozenset() takes a sequence and converts its

elements to its set items, passing a string to the frozenset() creates a

set of the str ing's indiv idual characters after removing any dupl icates .

difference(*others)

returns a new frozenset

with elements in the

frozenset that are not

in the others

The over loaded minus

operator (-) can be

used in place of

difference(*others)

symmetric_difference(other)

returns a new frozenset with

elements in either the frozenset

or other but not both.

Unlike symmetric_difference ,

over loaded bitwise XOR

operator (^) can be used on

mult ip le frozensets

union(*others) returns

a new frozenset with

elements from the

frozenset and al l others

The over loaded bitwise

OR operator (|) can be

used in place of the

union(*others)

intersection(*others)

returns a new frozenset

with elements common to

the frozenset and al l

others

The over loaded bitwise

AND operator (&) can be

used in place of the

intersection(*others)

isdisjoint(other) returns True i f the frozenset has no elements in

common with other. Sets are disjoint i f and only if their intersection is the

empty set. There is no operator that corresponds to the . isdisjo int() method.

issubset(other) returns True i f every

element in the frozenset is in other . The

symbol <= corresponds to subset and <

corresponds to proper subset .

issuperset(other) returns True i f

every element in the other is in frozenset .

The symbol >= corresponds to superset

and > corresponds to proper superset .

The non-operator versions of union() , intersection() , difference() ,

symmetric_difference() , issubset() , and issuperset() methods wi l l

accept any iterable as an argument. In contrast, their operator based

counterparts require their arguments to be sets/frozensets.

The > operator is the only way to test whether a frozensets is a proper

superset or not. There is no corresponding method.

The < operator is the only way to test whether a frozensets is a proper

subset or not. There is no corresponding method.

The copy() method returns a shal low copy of the frozenset . Deep copy

doesn’t make any sense for sets because sets/frozensets are only

al lowed to contain immutable objects .

The in and not in operators can be used to test whether a value is in a

frozenset or not.

Instances of set can be compared to instances of frozenset based on

their members.

Binary operations that mix set instances with frozenset return the type of

the first operand

