Python
Bootcamp
& Masterclass

arithn
oper:



Operators

Identity S

~ Arithmetic %
=

omparision > ) ® \ Membership in

e
Logical o] g
=

gk nxt




- °/ Arithmetic

, Operators
w/ -




operators

An expression is a combination of
variables, operators, objects,
parentheses and calls to functions
that Python can compute or evaluate
to return the result.

Operators are special symbols that
designate that some sort of
computation should be performed.
The values that an operator acts on

are called operands.

jgperand

operator

i
3

gk nxt

4

A

Ygknxt




+ (unary) and - (unary)

Unary positive acts on one operand and keeps the
positive sign of the operand positive and negative |+
sign of the operand negative (so, its effect is |,

practically nothing) b=s

Unary negation acts on one operand and switches
the sign of the operand (if the operand is positive, | s
unary negation makes it negative and if the operand

is negative, unary negation makes it positive ) 5

‘Ygknxt



+

+ operator adds the two operands if both are of numeric type. It concatenates if the
operands are strings or lists or tuples. It is an overloaded operator and will actually call
__add__ (double underscore add double underscore) magic method under the hood (so,
based on the operands, it adds/concatenates/raises error)

4.4 + 3 # + as addition operator

4.4.__add__(3) # + internally calls the magic method __add _

4 + True # + as addition operator (True evaluates as 1)

7.7 + False # + as addition operator (False evaluates as @)

True + False # + as addition operator

7.4

7.4

s

7.7

1

‘a' + 'b' + 7! # + as concatenation operator (concatenation of strings)
‘a'._add_ ('b').__add__('7") # + internally calls the magic method __add

[1, 2, 3] + ['a', 'b"] # + as concatenation operator (concatenation of lists)
(1, 2, 3) + ('a', 'b") # + as concatenation operator (concatenation of tuples)
#(1, 2, 3} + {'a’, 'b'} # sets cannot be cocatenated with + as __add__ is not implemented for set object
‘ab7"'

‘ab7'

[1, 2, 3, "a', 'b']

(1, 2, 3, 'a', 'b")

‘Ygknxt



*

% operator multiplies the two operands if both are of numeric type. It is an overloaded
operator and will actually call __mul__ and if it fails, calls __rmul__ (difference between
X._mul__(y) and x.__rmul__ (y) is that the former calculates x * y whereas the latter
calculates y % x)

% operator replicate the first operands if it is a string/list/tuple and second operand is an
integer type (True and False are also of integer type)

% as unary operator can be used for packing/unpacking multiple objects into a single

container

‘Y*gknxt



4 * 2

3.5 * 4.2

(2 + 43) * (3 + 57)
True * 3

False * 4

8
14.700000000000001
(-14+4227)

3

0

# True evaluates as 1
# False evaluates as 0

'Hello ' * 5 # string replication

'Hello '.__mul__ (5)

[1, 2, 3] * 4 # List replication
[1, 2, 3]._mul_ (4)

('a', 2, 3) *3 # tuple replication

(*a', 2, 3)._mul_ (3)

[1, 2, 3] * False

('a', 2, 3) * True

'Hello Hello Hello Hello Hello '
'Hello Hello Hello Hello Hello '

[, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]
[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]
(‘a', 2, 3, 'a', 2, 3, 'a', 2, 3)
(ta', 2, 3, 'a', 2, 3, 'a', 2, 3)

[]

(‘a', 2, 3)

‘*gknxt




x %

% % as exponentiation operator raises the first operand to the power of the second
operand if both are of numeric type. It is an overloaded operator and will actually call
pow__ magic method under the hood.

% % as unary operator can be used for unpacking/merging multiple dictionaries into a
single dictionary. It is also used for unpacking multiple keyword arguments.

2 ** 4 # 2 power 4 is same as 2*2*2%2
(2)._pow__(4)

1.2 ** -4,1

-3 * False

6 ** (2 + 41)

True ** False

16

16

9.47354024139752743

2]
(22.830375523713197+27.8347616021089277)

1

‘Ygknxt



o
= operator (subtraction operator) subtracts the second operand from the first operand. It
is an overloaded operator and will actually call __sub__ magic method under the hood.

= operator (difference operator) returns a new set with elements in the the first operand
that are not in the second operand.

4.4 - 3 # - as subtraction operator

4.4.__sub__(3) # - internally calls the magic method __sub__

4 - True # - as subtraction operator (True evaluates as 1)
7.7 - False # - as subtraction operator (False evaluates as 6)
True - False # - as subtraction operator

1.4060000000000004

1.40200000000000004

3

7.7

1

{1, 2, 3} - {1, 2} # - as difference operator

{3}

‘Ygknxt



/

/ operator (division operator or float division operator) divides the first operand by the
second operand if the operands are of numeric type. The result is always float if neither
operand is complex and complex otherwise. The second operand cannot be zero/False. It
will actually call __truediv__ magic method under the hood.

float('inf') / 26 26 / 10
float('-inf') / 26 (26).__truediv__ (10)
26 / float('inf') 26 / 3]
26 [/ float('-inf") 2 / 26
26 / @ # ZeroDivisionError 3j / 23
inf | 26 / True
False / True
-inf
2.6
0.0
2.6
-0.0
-8.666666666666666]
ZeroDivisionError Traceback (most recent call last) 0.07692307692307693]
~\AppData\Local\Temp/ipykernel_6488/3569365736.py in <module>
3 26 / float('inf') (1.5+85)
4 26 / float('-inf")
---->526 /0@ # ZeroDivisionError 26.0
ZeroDivisionError: division by zero 0.0

‘Ygknxt



//

/ / operator (floor division operator or integer division operator) divides the first operand
by the second operand if the operands are of int, float or bool type. If the result is float, it will
round it down to the next (small) integer, so the result is always int. The second operand
cannot be zero/False. It will actually call __floordiv__ magic method under the hood.

25 // 5

26 // 1@

(26)._ floordiv__ (1)

# 26 // 37 # TypeError: can't take floor of complex number
# 23 // 26 # TypeError: can't take floor of complex number
26 // True

False // True

-26 // 1@

-26 // -18

5
2
2
26
8
-3

2

‘Ygknxt



%

% operator (modulo operator) divides the dividend (first operand) by the divisor (second
operand) and returns the reminder if the operands are of numeric type, but not complex.
Result (remainder) takes the sign of the divisor. The divisor cannot be zero/False. It will

actually call __mod__ magic method under the hood.

divmod() internally uses modulo operator (%). It takes two parameters (dividend and
divisor) and returns a tuple with the results of floor division and modulo (quotient, reminder)

# dividend % divisor will be computed in Python as

# (dividend - (divisor * (dividend//divisor)))
print("274 // 5 is:", 274//5)

print("274 % 5 is:", 274 % 5)

print("274 - (5 * 274//5) is:", 274 - (5 * (274//5)))

274 // 5 is: 54

274 % 5 is: 4

274 - (5 * 274//5) is: 4
divmod(274, 5)

(54, 4)

‘Y*gknxt

274 / 5
274 1/ 5==54 5 4 quotient
divisor 5| 2 7 4 dividend
25 |
2 4
20



If dividend is even and divisor is 2, then the reminder (modulo) is 0.

# 1f dividend is even and divisor is 2, # 1f dividend is even and divisor is 2,
# then the reminder is @ # then the reminder is @
36 % 2 36 %2 ==20
36.0 % 2 36.0 % 2 == ©
2% 2 2% 2==0

2.6 % 2 2.0% 2 ==20
0% 2 Q%2 ==20
False % 2 False % 2 == @
-36 % 2 -36 %2 ==0
-36.0 % 2 -36.0 % 2 == @
-2 % 2 -2 %2==090
-2.0 % 2 -2.0%2==0
e True

8.0 True

2] True

8.0 True

5] True

2] True

e True

0.0 True

2] True

0.0 True

Ygknxt



If dividend is odd and divisor is 2, then the reminder (modulo) is not 0.

# 1f dividend 1is odd and divisor is 2, # 1f dividend is odd and divisor is 2,
# then the reminder 1is not @ # then the reminder 1is not @
37 % 2 37 % 2 == 0
37.1 % 2 37.1 % 2 == ©
1 % 2 1%2==20
0% 2 1.6 % 2 ==190
-37%2 -37 % 2 ==10
-37.1 % 2 -37.1 % 2 == 0
-1 % 2 -1 %2 ==0
-1.0 % 2 -1.0 % 2 == 0
1 False
1.1000000000000014 False
1 False
1.0 False
1 False
0.8999999999999986 False
1 False
1.0 False

Ygknxt



If dividend is int or equivalent and divisor is 1, then the reminder (modulo) is ©.

# 1f dividend is int or equivalent and
# divisor is 1, then the reminder is @
36 % 1

36.0 % 1

*®
® 3 L R ¥R

EL N
[

1

I MOR NN
-

[
P NNWWL
. NN -2

B I-

‘Ygknxt



If dividend is int or equivalent and divisor is 1, then the reminder (modulo) is ©.

# 1f both dividend and divisor have same # if both dividend and divisor have same
# absolute value, then the reminder == @ # absolute value, then the reminder ==
i 2% -2
2.0 % 2.0 2.0 % -2.0
;1741_1 e
° 0,

True % True 11AB ; 1o
-1.0 % -1.0 - e
1.0 % 1.0 1.0 % -1.0
-36 % -36 -36 % 36
-36.90 % -36.90 -36.0 % 36.0
-2 % -2 -2 % 2
-2.0 % -2.0 -2.0 % 2.0
e e
0.0 _e.0
° 2]
2}

2]
o

0.0
-9.9

-0.0
0.9

<]
5]
0.0 0.0
o 4]



If dividend is @ or False, then the reminder (modulo) is 0.

# if dividend is zero or False, # if dividend is zero or False, # 1f dividend is zero or False,
# then the reminder is @ # then the reminder is @ # then the reminder is ©
0 %1 0.0 % 1 False % 1
0% 2 0.0 % 2 False % 2
0% 1.7 0.0 % 1.7 False % 1.7
0 % -1 0.0 % -1 False % -1
0 % -2 0.0 % -2 False % -2
e % -1.7 0.0 % -1.7 False % -1.7
® % True 0.0 % True False % True
@ % float('inf') 0.0 % Float('irjf‘) False % float('ir:nf')
@ % float('-inf") .0 % float('-inf') False % float('-inf')
o 0.0 %]
0.0 <]
%)
0.0 0.0
0.9
-0.90 (2]
e
-0.90 <]
e
-0.0 -0.9
-0.0
0.0 (2]
0
0.0 0.9
0.0
-0.90 -9.0
-0.0

Ygknxt



If dividend is not negative and divisor is infinity, then the reminder is float of dividend.

If dividend is not negative and divisor is negative infinity, then the reminder is negative
infinity.

# if dividend is not negative and divisor is infinity, # 1f dividend is not negative and divisor 1s negative
# then the reminder 1is float of dividend # infinity, then the reminder 1s negative infinity
37 % float('inf') 37 % float('-inf')

36.8 % float('inf"') 36.8 % float('-inf"')

2 % float('inf"') 2 % float('-inf')

2.5 % float('inf"') 2.5 % float('-inf"')

1 % float('inf') 36 % float('-inf')

0 % float('inf') 1 % float('-inf")

37.0 -inf

36.8 -inf

2.0 -inf

2.5 -inf

1.0 -inf

0.0 -inf

‘Ygknxt



If dividend is negative and divisor is infinity, then the reminder is infinity. If dividend is
negative and divisor is negative infinity, then the reminder is same as dividend

# 1f dividend is negative and divisor is # if dividend is negative and divisor is negative
# infinity then the reminder is infinity # infinity then the reminder is same as dividend
-37 % float('inf") -37 % float('-inf")
_36 8 7 _Float(linfl) '36-8 % 'Float('—ln'F')

e . -2 % float('-inf"
-2 % float('inf") ( )

-2.5 % float('-inf")
-1 % float('-inf")
-36 % float('-inf")

-2.5 % float('inf")
-1 % float('inf")

inf -37.0
inf -36.8
inf -2.0
. -2.5
inf
. -1.0
inf

-36.0

‘Ygknxt



If dividend is infinity or negative infinity, then the reminder is nan (not a number)

# 1f dividend 1s infinity or negative
then the reminder is nan

# infinity,
float('inf')
float('inf')
float('inf')
float('inf')
float('inf")
float('inf")
nan

nan

nan

nan

nan

nan

3%

3% 3% R ¥ X

101

2

-100

-2
float('inf")
float('-inf")

# 1f dividend is infinity or negative
# infinity, then the reminder 1is nan

float('-inf') %
float('-inf') %
float('-inf') %
float('-inf') %
float('-inf') %
float('-inf') %
float('-inf') %
float('-inf') %
nan
nan
nan
nan
nan
nan

nan

n

Ygknxt

1

2

206.9

-1

-202.7

True
float('inf")
float('inf")



Python’s math module has fmod() method and it does the modulo operation differently.
math.fmod() uses truncated division and takes the sign of the dividend for the remainder.
Modulo operator with decimal.Decimal is guaranteed to maintain floating-point precision.

import math import math

37 % 5 37 % -5
math.fmod(37,5) math.fmod(37,-5)
-37 % -5 -37 % 5
math.fmod(-37,-5) math.fmod(-37,5)
2 -3

2.9 2.0

-2 3

-2.0 -2.0

‘Y*gknxt



%
c
% operator is an overloaded operator and can be used for string formatting. But it is

recommended not to use this type of formatting as newer formatting options, f-string and

.format (), provide flexibility and readability.

cust _name = 'Jane Doe'
cust prod = ['credit', 'loan', 'account']

cust_status = ['pending', 'approved', 'denied']
print('Hello, %s,' %cust _name, 'your %s' %cust prod[1], 'is %s' %cust status[1])

Hello, Jane Doe, your loan is approved

‘Y*gknxt



Resources

For best python resources, please visit:

@ gknxt.com/python/

Ygknxt



Python
Bootcamp
& Masterclass

Than

for your Ratir



