

An expression is a combination of

variables, operators, objects,

parentheses and calls to functions

that Python can compute or evaluate

to return the result.

Operators are special symbols that

designate that some sort of

computation should be performed.

The values that an operator acts on

are called operands.

Unary positive acts on one operand and keeps the

positive sign of the operand positive and negative

sign of the operand negative (so, its effect is

practically nothing)

Unary negation acts on one operand and switches

the sign of the operand (if the operand is positive,

unary negation makes it negative and if the operand

is negative, unary negation makes it positive)

+ operator adds the two operands if both are of numeric type. It concatenates if the

operands are strings or lists or tuples. It is an overloaded operator and will actually call

__add__ (double underscore add double underscore) magic method under the hood (so,

based on the operands, it adds/concatenates/raises error)

* operator multiplies the two operands if both are of numeric type. It is an overloaded

operator and will actually call __mul__ and if it fails, calls __rmul__ (difference between

x.__mul__(y) and x.__rmul__(y) is that the former calculates x * y whereas the latter

calculates y * x)

* operator replicate the first operands if it is a string/list/tuple and second operand is an

integer type (True and False are also of integer type)

* as unary operator can be used for packing/unpacking multiple objects into a single

container

* * as exponentiation operator raises the first operand to the power of the second

operand if both are of numeric type. It is an overloaded operator and will actually call

__pow__ magic method under the hood.

** as unary operator can be used for unpacking/merging multiple dictionaries into a

single dictionary. It is also used for unpacking multiple keyword arguments.

- operator (subtraction operator) subtracts the second operand from the first operand. It

is an overloaded operator and will actually call __sub__ magic method under the hood.

- operator (difference operator) returns a new set with elements in the the first operand

that are not in the second operand .

/ operator (division operator or float division operator) divides the first operand by the

second operand if the operands are of numeric type. The result is always float if neither

operand is complex and complex otherwise. The second operand cannot be zero/False. It

will actually call __truediv__ magic method under the hood.

// operator (floor division operator or integer division operator) divides the first operand

by the second operand if the operands are of int, float or bool type. If the result is float, it will

round it down to the next (small) integer, so the result is always int. The second operand

cannot be zero/False. It will actually call __floordiv__ magic method under the hood.

% operator (modulo operator) divides the dividend (first operand) by the divisor (second

operand) and returns the reminder if the operands are of numeric type, but not complex.

Result (remainder) takes the sign of the divisor. The divisor cannot be zero/False. It will

actually call __mod__ magic method under the hood.

divmod() internally uses modulo operator (%). It takes two parameters (dividend and

divisor) and returns a tuple with the results of floor division and modulo (quotient, reminder)

If dividend is even and divisor is 2, then the reminder (modulo) is 0.

If dividend is odd and divisor is 2, then the reminder (modulo) is not 0.

If dividend is int or equivalent and divisor is 1, then the reminder (modulo) is 0.

If dividend is int or equivalent and divisor is 1, then the reminder (modulo) is 0.

If dividend is 0 or False, then the reminder (modulo) is 0.

If dividend is not negative and divisor is infinity, then the reminder is float of dividend.

If dividend is not negative and divisor is negative infinity, then the reminder is negative

infinity.

If dividend is negative and divisor is infinity, then the reminder is infinity. If dividend is

negative and divisor is negative infinity, then the reminder is same as dividend

If dividend is infinity or negative infinity, then the reminder is nan (not a number)

Python’s math module has fmod() method and it does the modulo operation differently.

math.fmod() uses truncated division and takes the sign of the dividend for the remainder.

Modulo operator with decimal.Decimal is guaranteed to maintain floating-point precision.

% operator is an overloaded operator and can be used for string formatting. But it is

recommended not to use this type of formatting as newer formatting options, f-string and

.format(), provide flexibility and readability.

