

Python has three logical operators: and, or and not.

andworks with two operands and evaluates

to False unless both operands are True.

or works with two operands and evaluates

to True unless both of its inputs are False.

not works with only one operand and

returns the opposite of the operand: False

for True and True for False.

Python evaluates the operand on the right of and operator only when it needs to. It

starts evaluation from the left operand. If the operand on the left is False, there’s no

need to evaluate the operand on the right (regardless the result of right operand

evaluation, the whole expression is False when left operand evaluates to False)

This is called short-circuit evaluation, or lazy evaluation.

When and operator is used to combine two objects in a single expression, Python

internally uses bool() to determine the truth value of the operands and returns the

operand on the left if it evaluates to False. Otherwise, it returns the operand on the right.

None, False, 0, 0.0, 0j, Decimal(0), Fraction(0, 1), '', (), [], {},

set(), range(0) etc. evaluates to False

Python evaluates the operand on the right of or operator only when it needs to. It

starts evaluation from the left operand. If the operand on the left is True, there’s no

need to evaluate the operand on the right (regardless the result of right operand

evaluation, the whole expression is True when left operand evaluates to True)

This is called short-circuit evaluation, or lazy evaluation.

When or operator is used to combine two objects in a single expression, Python

internally uses bool() to determine the truth value of the operands and returns the

operand on the left if it evaluates to True. Otherwise, it returns the operand on the right.

not operator inverts the truth value of Boolean expressions and objects. It’s a unary operator

(it takes only one operand) Its operand can be a Boolean expression or any object including

user-defined objects. The sole task of not is to reverse the truth value of its operand.

In the expression evaluation, not has higher priority than and which has higher priority

than or and evaluation moves from left to right for equal priority operators and brackets

() have higher priority then all the operators

