Python
Bootcamp
& Masterclass

hbgﬂ

opers:

Operators

Identity S

~ Arithmetic %
=

omparision >) ® \ Membership in

e
Logical o] g
=

gk nxt

Python has three logical operators: and, or and not.

' and works with two operands and evaluates

to False unless both operands are True.

@ or works with two operands and evaluates n

to True unless both of its inputs are False.

Logical
Operators |.....

@ not works with only one operand and
returns the opposite of the operand: False l or
for True and True for False.

‘Ygknxt

and | T T T F F =

—. BE. HN.
+6Vv A B - U = v : y—
’—|_(I @ ! I and\‘ I ! -

. F T F T F F

Python evaluates the operand on the right of and operator only when it needs to. It
starts evaluation from the left operand. If the operand on the left is False, there’s no
need to evaluate the operand on the right (regardless the result of right operand
evaluation, the whole expression is False when left operand evaluates to False)

This is called short-circuit evaluation, or lazy evaluation.

‘Y*gknxt

True and True

True and False
False and True
False and False

True
False
False

False

5>4and 5 == 3 + 2
5 != 7 and not None

True

True

5>4and 5==3+2and5 !=7

True

Ygknxt

T T T FF F
A8+ AR,
S =L

and and\
F T F

T F F

. When and operator is used to combine two objects in a single expression, Python
internally uses bool() to determine the truth value of the operands and returns the

operand on the left if it evaluates to False. Otherwise, it returns the operand on the right.

9 None, False, O, 0.0, ©0j, Decimal(®), Fraction(e, 1), '', (O, [1, {},

J

set(), range(0®) etc. evaluatesto False

‘Ygknxt

[] and 4

® and 7

{} and 06/0
''and 7/0
() and 'st
0j and 6
False and

‘gk' == 'GK' and @/0

[]
o

{3

0
ej
False

False

divide by zero is ignored (short-circuiting)
divide by zero 1is 1ignored (short-circuiting)
1 = |STI

"Hello"
divide by zero is 1ignored (short-circuiting)

(1, 2, 3] and []

3 >2and?7

'gk' !'= 'GK' and 'Hello’

‘nxt' and @/7

True and 18 + 3

[None] and 'Python' == 'python'
1+ @j and 6

' ' and "Hello"

[1, 2, 3] and [4, 5, 6]

(1
7

'Hello'

21

False

'Hello'

[4, 5, 6]

Ygknxt

Ly
I|H

&
I|H

b L}/ @ |

&
IH

&
I|H

Python evaluates the operand on the right of or operator only when it needs to. It
starts evaluation from the left operand. If the operand on the left is True, there’s no
need to evaluate the operand on the right (regardless the result of right operand
evaluation, the whole expression is True when left operand evaluates to True)

This is called short-circuit evaluation, or lazy evaluation.

‘Y*gknxt

True or True

True or False
False or True
False or False

True
True
True

False

X =4
X == 3 or @ or print(None)

None

Ygknxt

¢
IIF

Ly
I|H

When or operator is used to combine two objects in a single expression, Python
internally uses bool() to determine the truth value of the operands and returns the

operand on the left if it evaluates to True. Otherwise, it returns the operand on the right.

‘Ygknxt

[1] or 4

3>2o0r7

'gk' 1= 'GK' or ©/0
'nxt" or 7/0

True or 18 + 3

[None] or 'Py' == 'py'
1+0joreé

' ' or "Hello"

2 <8or 2

2 < 7.20r []

[1]
True
True
"nxt'
True
[None]
(1+e3)
True

True

divide by zero is ignored (short-circuiting)
divide by zero is ignored (short-circuiting)

[] or 4

Q or 7

{} or 0/2

" or 7/7

None or 21

() or 'st' == 'ST'
8] or 6

False or "Hello"
'gk' == 'GK" or 2 + 4
7 > 10 or []

55> 10 or 5

4
7
0.0
1.0
21

False

'Hello'

[]

Ygknxt

L
Do,

M
q
a!ML

not operator inverts the truth value of Boolean expressions and objects. It’s a unary operator

not

V
\%

(it takes only one operand) Its operand can be a Boolean expression or any object including

user-defined objects. The sole task of not is to reverse the truth value of its operand.

‘Ygknxt

not
not
not
not
not
not
not
not
not
not
not

True

True

True

True

True

True

True

True

True

True

True

2]
0.0
complex(e, @)

[]

{}

0
set()
(0)
None
False

Ygknxt

not '0’'

not ©.00001

not complex(®, 1)
not ' ‘'

not [1]

not {0}

not 42

not True

not range(1)

False
False
False
False
False
False
False
False

False

Operator Precedence

. A
\ A

not

and | of

In the expression evaluation, not has higher priority than and which has higher priority
than or and evaluation moves from left to right for equal priority operators and brackets

() have higher priority then all the operators

Ygknxt

’1 or @ and @ \

1

(50r 4) and 2 > 1

Sor4and2>1 ‘

1 or @ and © and not []
1 or @ and 0.0 and not [1, 2, 3]

’True or True and not False

True

‘False and True or True or not True

True

’True and False and False or True w

True

Ygknxt

Resources

For best python resources, please visit:

@ gknxt.com/python/

Ygknxt

Python
Bootcamp
& Masterclass

Than

for your Ratir

