

Computers store information using binary digits (0 and 1) called bits.

bitwise operators are useful in working

with individual bits of data at the most

granular level

bitwise operators are used to

implement algorithms for data

compression, data encryption, and error

detection as well as to control physical

devices (sensors etc) using single-

board computers like Raspberry Pi etc.

bitwise NOT operator (~) is the only unary bitwise operator (it works with only one

operand) It performs logical negation by flipping each and every bit.

bitwise AND operator (&)

performs logical AND on each

bit position (each output bit is 1

if both input bits at the same

position are 1, otherwise, it’s 0)

bitwise OR operator (|) performs

logical OR on each bit position (each

output bit is 1 if at least one of the

two input bits at the same position is

1, otherwise, it’s 0)

bitwise XOR operator (^) performs

logical OR on each bit position (each

output bit is 1 if exactly one of the

two input bits at the same position is

1, otherwise, it’s 0)

bitwise right shift operator (>>) shifts

the binary representation of integer x

by n positions to the right. For positive

integers, it inserts n 0 bits on the left

and removes n right-most bits.

bitwise left shift operator (<<) shifts the

binary representation of integer x by n

positions to the left. For positive integers,

it inserts n 0 bits on the right and removes

n left-most bits.

