

A function is a set of instructions that can be reused/executed repeatedly or that,

because of their complexity, are better self-contained in a sub-program and called when

needed. It is a piece of code written to carry out a specified task by taking zero or more

inputs. When the task is carried out, the function will return one or more values,

with None being the default. There are three types of functions:

built-in functions (e.g. print(), type(), len() etc.)

user-defined functions (functions defined by users using def)

anonymous functions (also called lambda expressions or lambda functions)

A docstring short for (documentation string) is a string literal that occurs as the first

statement in a module, function, class, or method definition. Such a docstring becomes

the __doc__ special attribute of that object. Conventions for writing good docstrings are

given in PEP 257 (https://www.python.org/dev/peps/pep-0257/)

https://www.python.org/dev/peps/pep-0257/

Every Python function should return an object. If a user-defined function does not have a

return statement, Python will implicitly returns None

The return statement immediately terminates the function and passes execution control

back to the caller. If a function does not have a return statement, then function terminates

after executing the last executable statement. There can be multiple return statements.

The return statement provides a mechanism by which the function can pass data back to

the caller. If multiple comma-separated expressions are specified in a return statement,

then they’re packed and returned as a tuple

A parameter is the variable defined inside

the parentheses in the function definition.

An argument is the value that is sent to the

function when it is called.

The simplest way to pass parameters to a

function is by position. In the function

definition, the parameters are specified in a

particular order and arguments used in the

function calling are matched to the

function’s parameters based on their order.

With positional arguments, the arguments in the call and the parameters in the definition

must agree not only in order but in number as well.

A bare slash (/) in the parameter list of a function definition designate the parameters to

the left of the slash (/) must be specified positionally.

Function parameters can have default values, which can be declared by assigning a

default value in the function definition.

Any number of parameters can be given default values. Parameters with default values

must be defined as the last ones in the parameter list.

Default parameters are also called optional parameters as they can be omitted when

the function is called if the default value is preferred.

In Python, default parameter values are defined only once when the function is defined

(that is, when the def statement is executed). The default value will not be re-defined

each time the function is called.

Prefixing the final parameter name of the function with an asterisk (*) causes all excess
non-keyword arguments in a call of a function to be collected together and assigned as a

tuple to the given parameter.

In the definition of a function, the parameter specification *args indicates tuple packing.
In each call to the function, the arguments are packed into a tuple that the function can

refer to by the name args. (Any name can be used, but the name args is practically a

standard.)

Arguments can also be passed into a function by using the name of the parameter rather

than its position. Though the order is irrelevant when arguments are passed using

keywords, the number of arguments and parameters must still match.

When positional and keyword arguments are both present, all the positional arguments

must come first.

An asterisk (*) in the parameter list of a function definition designate the parameters to
the left of the asterisk (*) and to the right of the slash (/), if any, must be specified
keyword only.

Prefixing the final parameter name of the function with a double asterisk (**) causes all
excess keyword arguments in a call of a function to be collected together and assigned as

a dictionary to the given parameter.

In the definition of a function, the parameter specification **kwargs indicates dictionary
packing. In each call to the function, the arguments are packed into a dictionary that the

function can refer to by the name kwargs. (Any name can be used, but the name kwargs

is practically a standard.)

The general rule for using mixed argument-passing is that positional arguments come

first, then keyword arguments, followed by the indefinite positional arguments and last of

all the indefinite keyword arguments

In some other programming languages, there are two common paradigms for passing an

argument to a function: Pass-by-value and Pass-by-reference. Python follows a different

paradigm.

Passing an immutable object to a function is like pass-by-value of other languages. The

function can’t modify the object in the calling environment.

Passing a mutable object is somewhat - but not exactly - like pass-by-reference of other

languages. The function can’t reassign the object wholesale, but it can change items in

place within the object, and these changes will be reflected in the calling environment.

Namespace in Python is a mapping from identifiers to objects. Scopes are determined by

namespaces, which associate identifiers with objects and are implemented as dictionaries.

All namespaces are independent of one another. So, the same identifier can appear in

multiple namespaces. When a block of code is executed in Python, it has three primary

namespaces:

local

global

built-in

For a module, a command executed in an interactive session, or a script running from a

file, the global and local namespaces are the same.

When an identifier is encountered during

execution, Python first looks in the local

namespace for it if the local namespace

exists at that point. If the identifier isn’t found,

Python looks in the enclosing namespace for

it if the enclosing namespace exists at that

point. If the identifier isn’t found, the global

namespace is looked in next. If the identifier

still hasn’t been found, the built-in

namespace is checked. If it doesn’t exist

there, aNameError exception occurs.

Each function and method has a local namespace that associates local identifiers with

objects. The local namespace exists from the moment the function or method is called

until it terminates and is accessible only to that function or method. Identifiers in the

local namespace are in scope from the point at which you define them until the function

or method terminates.

Let’s say a main program calls a function f(). Python immediately creates a new

namespace for f(). Let’s say f() calls g(). Python immediately creates a separate

namespace for g() The namespace created for g() is the local namespace, and the

namespace created for f() is the enclosing namespace.

The global namespace contains any names defined at the level of the main program.

Python creates the global namespace when the main program body starts, and it

remains in existence until the interpreter terminates.

Each module has a global namespace that associates a module’s global identifiers (such

as global variables, function names and class names) with objects. Python creates a

module’s global namespace when it loads the module. A module’s global namespace

exists and its identifiers are in scope to the code within that module until the program

(or interactive session) terminates.

Python creates a global namespace for any module that your program loads with the

import statement.

The built-in namespace associate identifiers for Python’s built-in functions and types

with objects that define those functions and types. Python creates the built-in

namespace when the interpreter starts executing. The built-in namespace’s identifiers

remain in scope for all code until the program (or interactive session) terminates. The

built-in namespace contains the names of all of Python’s built-in objects. These are

available at all times when Python is running.

Python allows you to define nested functions inside other functions or methods. When

an identifier accessed inside a nested function, Python searches the nested function’s

local namespace first, then the enclosing function’s namespace, then the global

namespace and finally the built-in namespace. This is sometimes referred to as the

LEGB (local, enclosing, global, built-in) rule.

Assume that Python session just started. It creates built-in namespace.

line 1

Python creates a global namespace and variable z is added to the global namespace

line 2

function identifier scope_test is added to the global namespace

line 6

As the execution is not in any function call, only session’s global namespace and the

built-in namespace are currently accessible. Python first searches the session’s

global namespace, which contains scope_test. So scope_test is in scope and

Python uses the corresponding object to call scope_test

line 3

As scope_test begins executing, Python creates the function’s local namespace.

As function scope_test defined a variable y, Python adds y to the function’s local

namespace. The variable y is now in scope until the function

finishes executing.

line 4

scope_test calls the built-in function print, passing y as the argument. To execute this call,

Python must resolve the identifiers y and print. The identifier y is defined in the local

namespace, so it’s in scope and Python will use the corresponding object (the string 'I am y. I

am in local scope') as print’s argument. To call the function, Python must find print’s

corresponding object. First, it looks in the local namespace, which does not define print.

Next, it looks in the session’s global namespace, which does not define print. Finally, it looks

in the built-in namespace, which does define print. So, print is in scope and Python uses the

corresponding object to call print.

line 5

scope_test calls the built-in function print again with the argument z, which is not

defined in the local namespace. So, Python looks in the global namespace. The

argument z is defined in the global namespace, so z is in scope and Python will use

the corresponding object (the string 'I am z. I am in global scope') as print’s

argument. Again, Python finds the identifier print in the built-in namespace and

uses the corresponding object to call print.

line 7

After executing line 5, function terminates as it is the last statement and there is no

return statement. The function’s local namespace no longer exists, meaning the

local variable y is now undefined.

